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Abstract

This research aims to make science more accessible through the use of open source
3-D printers.

A new control system for CNC machines in general and 3-D printers specifically,
is developed and presented that enables web-based control of 3-D tools from any
Internet connected device. The system can be set up and controlled entirely from a
web interface.

A tool was designed to help apply science to the developing world. The developing
world remains plagued by lack of access to safe drinking water. A methodology is pro-
vided for the design, development, and technical validation of a low-cost open-source
water testing platform. A case study is presented where the platform is developed
to provide both colorimetry and nephelometry. This approach resulted in equipment
that costs between 7.5 and 15 times less than current commercially available tools.

A syringe pump was designed and manufactured using an open-source hardware and
software. The design, bill of materials and assembly instructions are available. The
cost of the entire system, including the controller and web-based control interface, is
on the order of 5% or less of a commercial syringe pump having similar performance.
The design should suit the needs of almost any research activity requiring a syringe
pump.

A low-cost, open source 3-D microscope stage is presented. A RepRap 3-D printer was
converted into an optical microscope equipped with a customized holder for a USB
microscope. The machine is able to operate with USB or conventional microscopes.
The repeatibility is below 2-D microscope stages, but it is adequate for the majority
of scientific applications. The stage costs less than 3% to 9% of the closest proprietary
commercial stages.

A deformation model for PLA was expanded to use a physics based temperature
gradient. This generalized the model to 3-D printing in a room temperature environ-
ment. Tests confirm that this is a valid model for predicting warpage of thin vertical
walls of PLA. Additionally, the effect of annealing was examined. It was found that
at a temperature of 50◦C, no shrinkage or crystallization takes place, but at 90◦C the
plastic rapidly crystallizes to around 20% crystallinity.

xvii





Chapter 1

Introduction

1.1 Motivation

An important difference between humans and most other animals is our high level
of intelligence. Throughout history, while most animals survive and procreate by
adapting their body to the environment through evolution, humans have in many
cases used their mind to adapt their environment to their body.

It should therefore be no surprise that humans seem to have an intrinsic hunger for
knowledge. But there are limits to how much a person can learn. For many people,
those limits are not rooted in their physical abilities, but in the society they live in.
Learning costs time, and often money. While for some people it is possible to be paid
for learning, many do not have that luxury, or at the very least they get a limited
budget.

The modern scientific community publishes its findings for the world to see. This
greatly increases the pace at which new discoveries are made, because it allows sci-
entists to avoid reinventing things. A major limitation that remains is the amount of
people working on it.

By making scientific tools more affordable, more people can join the scientific com-
munity and people in the community can be more productive. The result of this is
not just increased happiness for those people. It also allows them to use their new
knowledge to improve living conditions for themselves and the people around them.
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1.2 Outline of the Dissertation

This dissertation focuses on making science more accessible through the use of 3-D
printers. Low cost 3-D printers like the RepRap (self Replicating Rapid prototyper)
are relatively new, and they have a lot of potential for accomplishing this.

The way they were used until now was limited, however. In order to make them
more flexible, new control software was needed. To overcome this limitation, an open
source 3-D machine control software was designed and implemented for this purpose.
It is described in Chapter 2. This allowed 3-D printers to be used for the projects
described in the latter chapters.

1.2.1 Printed Scientific Tools

An example of technology that can improve living conditions is described in
Chapter 3: a low cost nephelometer, which can be used for water quality measure-
ments. This 3-D printed device not only allows people in the developing world to join
the scientific community by using this device for measurements in their region, but
it also allows them to use the device for preventing sickness.

Similarly, Chapter 4 describes an open source 3-D printable syringe pump, which
allows disadvantaged people to use such a device for scientific research or any other
purpose (e.g. medicine), and people who could previously afford syringe pumps can
now spend more money on other costs, so it improves their efficiency as well.

1.2.2 Modifying the Printer

Printed tools such as described above are very useful, but the printer can do more. It
is itself a robot which can be modified to be used as a more general purpose scientific
instrument. For example, the syringe pump designed and discussed in Chapter 4 was
slightly modified and mounted on a 3-D printer to print liquids. In Chapter 5, the
process is described to modity a 3-D printer to mount a USB microscope instead of a
print tool. Modifications like this increase the value of the 3-D printer, both because
they allow it to be used for scientific methods (microscopy, in this case), but also
because the printer and microscope now take as much space together as one of them

2



did before.

1.2.3 Improving the Printing Process

As described above, RepRap 3-D printers in their current state are very capable
scientific tools. But there is room for improvement. The printed parts deform during
and after printing, and the physics behind this have not been explained well. In
Chapter 6 the mechanism behind the deformation is evaluated to improve an existing
model based on careful thermal measurements. The insights that this provides can
help to prevent or compensate for deformation in the future, which would allow more
precise and larger objects to be printed using the fused filament fabrication method
that is used by RepRap 3-D printers.
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Chapter 2

Free and Open-Source Control
Software for 3-D Motion and
Processing

abstract1

RepRap 3-D printers and their derivatives using conventional firmware are limited by:
1) requiring technical knowledge, 2) poor resilience with unreliable hardware, and 3)
poor integration in complicated systems. In this paper, a new control system called
Franklin, for CNC machines in general and 3-D printers specifically, is presented that
enables web-based three dimensional control of additive, subtractive and analytical
tools from any Internet connected device. Franklin can be set up and controlled
entirely from a web interface; it uses a custom protocol which allows it to continue
printing when the connection is temporarily lost, and allows communication with
scripts.

1The material contained in this chapter was previously published in the Journal of Open Research
Software[1]
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(1) Overview

2.1 Introduction

Since Bowyer’s open source release of the self-replicating rapid prototyper (RepRap)
[2, 3], people from all over the world have been building and improving RepRap 3-D
printers [4]. The existing control system consists of two parts: firmware on the 3-D
printer to send the signals through to individual components, and a program on a
desktop computer to send instructions (G-code) to the firmware. Current firmware
options (Table 2.1) use the same interface with the host, and suffer from two funda-
mental problems: 1) they are not robust and 2) they require a weak microcontroller to
do significant work, thus limiting their functionality. Some firmware solve the latter
challenge by requiring a more powerful microcontroller, which limits its applicability.

Table 2.1

Current RepRap Firmware.

Name Hardware Comments
RepRap Firmware ARM
(original)
LinuxCNC PC Uses the parallel port, or GPIO pins

on a Raspberry Pi or BeagleBone
RepRap Firmware ARM Based on RepRap Firmware
(fork by dc42)
Marlin AVR Adaptation of Grbl for 3-D printers
Repetier AVR, ARM Based on Marlin
Teacup AVR, ARM Runs on AVRs with low memory,

such as Arduino Uno
aprinter AVR, ARM
Smoothie ARM

As there is a standard communication format between existing firmware and hosts,
there are also many different options for host software including Pronterface [5], Cura
[6] and OctoPrint [7]. In terms of ease of use, OctoPrint stands out: it provides a
web interface to control the printer over a network from any device with a browser.
OctoPrint supports monitoring the printer with a webcam, and makes recordings of
the print. Another project that is worth noting in detail is Pacemaker [8]. Pacemaker
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defines a new protocol that tries to move most computationally intensive tasks from
the firmware to the host. This protocol replaces G-code and requires firmware that
can handle it. The Pacemaker program itself runs on a host computer, converting
G-code into the format understood by the firmware. The format is designed to be
backwards compatible, so different firmware and hosts can work together. This only
works if new configurations are tested and validated, requiring many users to maintain
a unique configuration. At this point, it is unclear whether it will gain the critical
mass necessary for success.

Reliability has also been identified as a core challenge for low-cost 3-D printers [9]. For
a system to work reliably, data sent between components must not be corrupted and
as this is not always avoidable, error checking is required. Unfortunately, ubiquitous
computer numerical control (CNC) tools of all types most commonly use G-code,
which provides a weak checksum for data sent to the device and no protection for
replies. For unreliable connections, the host computer reports a lost serial port,
almost immediately followed by a newly discovered port. For all of the current control
systems summarized in Table 1, when this occurs mid-print, the print fails. This can
only be fixed by changing the protocol between firmware and host software, and then
both the firmware and the host software need to be changed to implement the new
protocol. Recovering from such connection issues is becoming increasingly important
as printers become larger (e.g. Gigabot), work on more sophisticated designs such as
scientific [10, 11] and medical equipment [12, 13, 14], and solar-powered printers are
used to accelerate sustainable development [15, 16, 17].

CNC machines are powerful general purpose motion controllers that are capable of
integrating with a system, for example to perform a constant criterion experiment
such as recording the adjustments made to an actuator required to keep a measured
value constant. While the hardware is capable, the G-code protocol provides no means
for performing such functions. Similarly G-code does not integrate well with other
programs, which prevents one click print functionality. To solve these two problems
a scripted interface is necessary.

In this paper a new control system called Franklin is presented to be used with CNC
machines in general and 3-D printers specifically. It was developed while exploring
modifications to RepRap 3-D printers, in order to make them more powerful and
more user friendly. It solves the problems identified above and allows CNC machines
to be more productive and valuable. Franklin was tested on the following RepRap
devices: Mendel RepRap, Delta RepRap, OS laser welder, PCB micromill, and the
open source metal 3-D printer. The results are presented and discussed.
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2.2 Implementation and Architecture

Franklin’s purpose is to: 1) drive CNC hardware including motors, switches, and a
tool head and 2) integrate well with the remaining software tool chain, such as 3-D
modeling programs and slicers. Slicers translate a 3-D shape described by an STL file
and slice it into consecutive thin layers in the z-direction (vertically) as g-code. The
full code of Franklin is available on Github under the GNU Affero General Public
License [18].

2.2.1 System Description

Reprap 3-D printers have a dedicated real time control board, which is normally
based on the Arduino [19] prototyping platform. When using Franklin, the control
board contains Franklin Firmware, which handles low-level control and communicates
with a more powerful host computer using a serial interface. On the host computer,
Franklin Server provides a web interface that can be used from any device on the same
network, including the Internet (Figure 2.1). Franklin uses an encrypted (HTTPS)
connection and allows restricting access with a password to prevent unauthorized
users from controlling the device.

Browser Browser Script

Browser Script

Firmware

Python Driver

C Driver

Firmware

Server

Python Driver

C Driver

Python Driver

C Driver

Firmware

Internet

Print Host

Printer Hardware

Figure 2.1: Schematic of the workflow of creating a 3-D printed object
using Franklin.

The Franklin Server can handle multiple devices simultaneously using a dedicated
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driver for each device. This driver consists of two processes: one handling high
speed and time sensitive functions written in C++ (the Franklin C Driver), and
one handling the rest written in Python (the Franklin Python Driver). In addition
to communicating with each other, the Franklin C Driver communicates with the
Franklin Firmware, while the Franklin Python Driver communicates with Franklin
Server. During device discovery, before the driver is started, the Franklin Server also
communicates directly with the Franklin Firmware.

For Franklin to be considered acceptable as a firmware solution, tests were run us-
ing the following: Mendel RepRap [20], Delta RepRap [21], quad delta RepRap (4
vertically stacked quad MOST delta RepRap heads run on a single microcontroller
and set of three position stepper motors), OS laser welder [11], PCB micromill [22]
and the open source metal 3-D printer [23]. The test data obtained from the latter
was utilized to further develop the metal 3-D printer design [24]. Rather than in-
cluding parts produced via fused filament fabrication, the updated 3-D printer design
was constructed entirely from metal parts to reduce damage caused by weld splatter.
Franklin Firmware and the improved metal 3-D printer were used to establish low-
cost substrate release mechanisms that allow metal 3-D printed objects to be removed
from a metal print substrate with minimal force [24].

2.2.2 Franklin Firmware

Franklin Firmware only handles tasks that cannot be performed well by the host
computer as the microcontroller lacks processing power and memory (8 bit, 16 MHz,
no hardware assisted floating point operations) compared to the host computer’s pro-
cessor. Fewer microcontroller tasks ensures more time to complete them, improving
overall system performance. Franklin goes further than Pacemaker in this regard.
Pacemaker assumes all machines to be Cartesian, and approximates moves on any
machine that is not. Alternatively, Franklin allows the host to compute exactly when
to execute a step with each motor, and the firmware will do them at the requested
time, regardless of mechanical design. However, due to limits on the bandwidth of the
serial port, this ideal situation only occurs at very low speeds (below 200 steps per
second, which equates to around 4 mm per second, depending on the printer design).
At higher speeds, the moves are interpolated in the same way as Pacemaker and
most other firmwares handle non-Cartesian configurations. Franklin Firmware han-
dles temperature controls, general purpose input/output (GPIO) pins, and control of
stepper motors.
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2.2.2.1 Temperature Controls

The Arduino has an analog-to-digital converter (ADC) multiplexed to several pins.
On one or more of those pins, a voltage divider with a thermistor is normally used to
measure the temperature of extruders and the heated bed of conventional RepRaps.
Franklin Firmware continuously reads all analog inputs that are set up as temperature
controls and controls two GPIO (general-purpose input/output) pins based on the
measured value. One of the controlled GPIOs is connected to the heater and the
other controls a cooling fan. The heater and fan controls each have set points and
the state of the GPIOs upon reaching set point is configurable. It is also possible to
simply measure temperature without any control activity. The temperature reading
is communicated to the host, so it can be used by scripts and shown in a browser.

Updating the heater and fan is not time sensitive so it is reasonable to take that part
of the controls out of the firmware and implement it in the driver instead. However,
it is important that these controls never fail: if a heater remains switched on while
the extruder is very hot, it will damage the machine and can be a fire hazard. Were
temperature control implemented in the Franklin Driver instead of Franklin Firmware,
this scenario could occur when the serial connection is lost. Therefore, a simple heater
control system is integrated into the Franklin Firmware. A more complicated system,
such as a PID controller, could still be implemented in the Franklin C Driver. In that
case, the system in the Firmware would serve as a protection against overheating.

2.2.2.2 GPIO Controls

Some printers and CNC machines have a need for controlling extra components. In
most cases, they need simple digital signals, which can be either on or off. For
example, the open source metal RepRap 3-D printer needs to switch a metal inert
gas (MIG) welder (also known as gas metal arc welding or GMAW) on and off. Every
microcontroller has a number of digital GPIO pins that can be used for this purpose.
Franklin Firmware provides a simple interface to use them: it allows the pins to
be set in any of four states: output low, output high, input, or input with pull up
resistor. Scripts can read the values from input pins. In addition to storing a current
state of each pin, it also stores a reset state. When a reset is requested, or when
the connection is lost for some time, the pins are all changed to their reset state to
avoid problems (for example, the welder will be switched off upon permanent loss of
communication with the host).
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2.2.2.3 Stepper Motor Control

The hardware may have any number of stepper motors to move the tool in space,
and to activate the tool (such as to extrude material from the nozzle in fused fila-
ment fabrication). However, the motors do not always correspond directly to a simple
direction in Cartesian space. For example, on a delta bot, all three positioning mo-
tors need to move simultaneously for the tool to move in any straight line. As the
conversion from tool position to motor positions can be complex, this conversion is
performed in the Franklin C Driver.

Franklin Firmware only has a concept of motor positions. The Franklin C Driver
sends it a list of numbers of steps to take, which can be positive or negative. Franklin
Firmware steps through this list at a constant speed and sends the steps to the motors
at the requested times. ADC readings are performed in the background, leaving the
microcontroller to focus resources on motor control so that steps can be very well
timed leading to smoother movement.

2.2.3 Franklin C Driver

The computationally intensive conversion from tool position to motor position is
implemented in C++ as Python is not fast enough. It groups motors into “spaces”.
Every space has a Cartesian coordinate system where the tool can be positioned,
and a certain geometry. Currently, Cartesian and delta geometries are implemented,
while other geometries are left for future work. 3-D printers will normally consist
of two spaces: one for moving the 3-dimensional tool and one for the 1-dimensional
extruder. A 3-D printer with multiple extruders has a higher dimensionality for its
extruder space.

The Franklin C Driver receives instructions similar to G-code from the Franklin
Python Driver. It converts those into the step maps that the Franklin Firmware
needs, and sends them to the printer controller. In addition, it passes GPIO and
ADC commands between the Franklin Firmware and the Franklin Python Driver.
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2.2.4 Franklin Python Driver

As many tasks as possible are implemented in the Franklin Python driver, includ-
ing interface provision with both scripts and browsers. The Franklin Python driver
informs interfaces of changes, parses G-code they send, and stores settings. All set-
tings, including pin assignments, can be changed without rewriting the firmware to
the microcontroller. In addition, settings can be written to hard disk as machine pro-
files to make sure they are available for reloading the next time the machine starts.
Any number of profiles are supported permitting settings for different purposes. For
example, if a machine can accommodate different tools, a different profile may be
used for each tool.

2.2.5 Franklin Server

Multiple machines are handled concurrently by the Franklin Server. It detects devices
when they are connected and starts the Franklin Python Driver for them, which in
turn starts its own Franklin C driver. If a device is detected for which a Franklin
Python Driver had already been started (that is, one that had lost its connection),
the Franklin Server informs this driver of the reconnected machine and it will resume
its operation. If this happens before the buffer in the Franklin Firmware runs out, it
has no effect on the currently running job.

The Franklin Server provides a web interface, similar to Octoprint. (but without a
webcam, although this is easily added). This means that any device with a browser,
including a tablet or smartphone, can be used to control it. The web interface makes
heavy use of Javascript to present all the changes that are reported by the Franklin
Server to the user. It communicates with the Franklin Server using websockets. This
same websockets interface is also exposed to other scripts. The web site allows manual
control of the machine while scripts can integrate it with any automated or manual
system.

The web interface allows all settings to be changed, including pin assignments, ther-
mistor values and printer geometry (Figure 2.2). These changes take effect immedi-
ately. For example, if a request to double the number of steps per millimeter for the
extruder drive is received while printing a segment, the remainder of that segment
outputs twice as much filament per millimeter than before the change.
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Figure 2.2: Franklin web interface.

Additionally, if a change in machine geometry is made while the motors are enabled
and idle, the tool is moved to the current position according to the settings describing
the new geometry. This allows for easy machine calibration, including calibration
types that are challenging with traditional systems such as the printer radius of a
delta. Franklin instructs the printer to move to a height of 0. Then the limit switch
positions are changed and the nozzle will move to reflect that change. When the
nozzle touches the build platform, the limit switch position is correct. Then the
nozzle is instructed to move horizontally to the edge of the build platform. Now
the radius is changed and the nozzle will again move to reflect that change. When
the nozzle touches the build platform again, the calibration is complete. The whole
procedure can be completed within one minute with no additional sensors.

2.2.6 Communication

There are four communication interfaces in Franklin. The first is a websockets con-
nection to the browser or script clients. Every packet on this connection is a JSON
array, containing a numerical ID chosen by the client, the name of the function to
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call, a list of regular arguments and a list of keyword arguments. The server calls the
requested function with the given arguments and returns either a value or an error,
also encoded as a JSON array. This array contains the ID that was sent with the
request, so the client can send asynchronous messages. A list of supported functions
is given in Tables 2.2 and 2.3.

The second interface is between the Franklin Server and the Franklin Python Driver.
The commands are sent over standard input and standard output of the Franklin
Python Driver. The protocol is identical to the one described above, except that the
JSON packets are not wrapped in a websocket before being sent. When the functions
in Table 2 are requested from the Franklin Server, it will pass them through to the
Franklin Python Driver. The exception are the functions marked “server only”; those
are handled by the server and not valid for this interface.

The third interface is between the Franklin Python Driver and the Franklin C Driver,
and is different from the others. The Franklin C Driver should not be burdened
with parsing JSON packets, so instead it accepts binary data which is more easily
extracted from the packet. Every packet starts with a byte containing the length of
the packet, followed by a command byte. Each command has its own arguments. A
list of all commands that the Franklin C Driver understands is given in Tables 2.4
and 2.5.

Commands from the Franklin C Driver to the Franklin Python Driver also start with
a length byte and a command byte. Then follow three 32 bit integers and a 32 bit
floating point value. For most commands, 18 bytes are all that is required. The
commands that may need more bytes (DATA and RUN FILE) have a larger length
value and follow those values with a list of bytes.

When a GOTO or PROBE command is received, a reply is sent, which is either
OK or WAIT. In the latter case the queue is full and no further GOTO or PROBE
commands can be sent until the Franklin C Driver sends a CONTINUE command.

The last interface is between the Franklin C Driver and the Franklin Firmware. This
interface has unique qualities because it is implemented over a physical serial line
that is much slower and unreliable. Because of the large amount of data that needs
to be transmitted over this slow interface, the length byte is not sent, and the length
of packets must be determined from their content. Because reliability is important,
a checksum is added to maintain packet integrity.

Data is either a single byte command or a packet. The single byte commands all have
their highest bit set, and are otherwise chosen to have a maximum distance between
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Table 2.2

Supported functions.

Command Function
upload Flash new firmware to an Arduino. (server only)
find printer Search for a machine by UUID or port.

(server only)
set autodetect, get autodetect Whether the server tries to detect a machine

on newly discovered ports. (server only)
disable Deactivate the machine. (server only)
detect, detect all Detect a machine, or all printers. (server only)
add port, remove port Notify server of port discovery.

(server only, called from kernel signals)
get ports Get list of available ports. (server only)
set default printer, Which machine is used by new connections.
get default printer (server only)
set printer, get printer Which machine is used by this connection.

(server only)
set monitor, get monitor Whether this connection should be informed

of changes in settings. (server only)
reset Reset the Arduino.
die Close the Python and C driver.
flush Wait for queue to be empty.
probe Map an area using a probe signal

or manual feedback.
goto Move motors to a position.
gotocb Move motors to a position

and wait for it to arrive.
sleep Change sleep state of the motors.
settemp Change the set point of a temperature control.
waittemp Signal an alarm when a temperature enters

a specified range.
readtemp Request current temperature.
readpin Request current value of a GPIO pin.
load, save, list profiles, Profile management.
remove profile,
set default profile
abort Disable heaters, sleep motors, reset GPIO pins

and stop any running G-code.
pause Pause or resume the currently running G-code.
queued Request length of the queue.
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Table 2.3

Supported functions. (Continued)

Command Function
home Recalibrate the machine with limit switches.
park Home if required, then go to park position.
wait for temp Wait until an alarm from waittemp is triggered.
clear alarm Clear the waittemp alarms.
export settings Retrieve all settings for storing in a text file.
import settings Change settings from a text file.
gcode run Run (parsed) G-code.
request confirmation Wait for the user to press a button or abort.
confirm Signal confirmation.
queue add Parse G-code and add it to the queue.
queue remove Remove an entry from the queue.
gcode parse Parse G-code and return the result.
gcode bbox Find the bounding box of parsed G-code.
queue print Send one or more queue entries to the machine.
queue probe Probe the combined bounding box of one

or more entries, then send them to the machine.
get globals, set globals Manage global settings
get axis pos Get current position of an axis.
set axis pos Set current position of an axis,

without moving the motors.
get space, get axis, get motor, Manage space settings.
set space, set axis, set motor
get temp, set temp Manage temp settings.
get gpio, set gpio Manage GPIO settings.
send printer Request current state of a machine.

them in terms of bit flips required to go from one to the other. A packet starts with
a command, none of which has the highest bit set. The command byte is followed by
arguments. One or more checksum bytes are added at the end of the packet.

In G-code, the checksum is computed by summing all bytes of the packet and using
the lowest 8 bits of the result. This is very weak, and two flipped bits have a large
chance of resulting in a valid checksum, even though the packet is incorrect.

Franklin uses a Hamming code [25] with one parity byte for every three bytes of data.
That byte contains five parity bits, each of which set the parity of a selected group
of bits to be even. The groups are carefully chosen to maximize the distance between
valid packets. Two bit flips can never result in another valid packet, and more random
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Table 2.4

Commands for the Franklin C Driver.

Command Function Response
RESET Reset the machine.
GET UUID Get universally unique identifier UUID

for the machine.
GOTO Add segment to move queue. MOVECB
RUN FILE Run a parsed G-Code file UPDATE TEMP,

from disk. UPDATE PIN,
CONFIRM,
FILE DONE

PROBE Like goto, and monitor probe MOVECB, LIMIT
pin to abort move and notify
Python Driver about position.

SLEEP Enable or disable the motors.
SETTEMP Set a temperature target.
WAITTEMP Set an alarm. TEMPCB
READTEMP Read current temperature. TEMP
SETPOS Set current axis position.
GETPOS Get current axis position. POS
READ GLOBALS Get global settings. DATA
WRITE GLOBALS Set global settings.
READ SPACE INFO, Get space settings. DATA
READ SPACE AXIS,
READ SPACE MOTOR
WRITE SPACE INFO, Set space settings.
WRITE SPACE AXIS,
WRITE SPACE MOTOR
READ TEMP Get temp settings. DATA
WRITE TEMP Set temp settings.
READ GPIO Get GPIO settings. DATA
WRITE GPIO Set GPIO settings.
QUEUED Request queue length QUEUE

and optionally abort move.
READPIN Get GPIO pin state. PIN
HOME Move away from limit switches HOMED

until it no longer hits them.
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Table 2.5

Commands for the Franklin C Driver. (Continued)

Command Function Response
RECONNECT Machine has reconnected

at this port.
RESUME Resume running a file

that was previously paused.
GETTIME Get time estimates TIME

about the current job.
(asynchronous) Notify that the state PINCHANGE

of an input GPIO has changed.
(asynchronous) A limit switch was triggered LIMIT

during a move.
(asynchronous) The machine was disabled TIMEOUT

due to a timeout.
(asynchronous) The connection to the machine DISCONNECT

was lost.

flips are very unlikely to do so.

Detection of corrupt packets is required but is not sufficient for a reliable connection.
Corrupt and lost packets must also be properly handled. When it is detected that
a packet did not arrive, it is sent again. This means that if the packet was received
but the acknowledgment was not, duplicate packets may be received. This must also
be handled. The method for this has been copied from the USB standard: Each
packet has one bit which indicates if it is an even or odd packet. Even packets are
acknowledged with ACK0, odd packets with ACK1. If an even packet is received after
an even packet, then the original ACK must have been lost. In that case, another
ACK0 is sent, but the packet is ignored, because the original even packet has already
been handled. Odd packets are handled similarly.

This system allows any amount of lost or corrupted packets with no effect on the
reliability of the link. Because the Franklin Server is capable of detecting that a
new printer is the same as one that has previously disconnected, it can pick up the
connection and continue as if nothing happened. If this happens in the middle of a
print, it will only pause for a moment. If the connection is restored before the queue
in Franklin firmware is empty, no pause will occur. Table 2.6 lists all the commands
that are supported.
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Table 2.6

Supported Commands, Function and Response.

Command Function Response
BEGIN Handshake; send version READY

and receive capabilities.
PING Handshake. PONG
RESET Reset the Arduino.
SETUP Set up globals.
CONTROL Manage GPIO pin states.
MSETUP Set up motor settings.
ASETUP Set up ADC (temp) settings.
HOME Move away from limit switches. HOMED
START MOVE Begin sending movement buffers.
START PROBE Begin sending movement buffers for probing.
MOVE Send movement buffer for one motor.
START Begin moving.
STOP Stop moving and discard buffer. STOPPED
ABORT Stop moving, disable all motors, STOPPED

reset all heaters and GPIO.
DISCARD Discard a part of the queued buffers

without stopping the current move.
GETPIN Read current state of a GPIO pin. PIN
(asynchronous) Buffer has been completed. DONE
(asynchronous) Buffer has been completed UNDERRUN

and no next buffer is available.
(asynchronous) ADC has been measured. ADC
(asynchronous) Limit switch has been triggered. LIMIT
(asynchronous) Machine has been deactivated due to timeout. TIMEOUT
(asynchronous) The value of an input pin has changed. PINCHANGE

2.2.7 Controlling Movements

A movement request to the C Driver consists of two speeds, F0 and F1, and a target
position for each dimension in each space. F0 is the requested starting speed, while F1
is the requested finishing speed. The tool must move on a linear path and accelerate
at a constant rate during the segment.

F0 and F1 are limited to maximum values which are set for each axis. Because of
this, the common way to move fast is to request a speed of infinity. That will make
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the tool move at the maximum allowed speed configured in settings.

While moving, the speed and acceleration of every motor is limited as well. On
a Cartesian system, the relationship between motor speed and axis speed is linear
and simple. But this is not true for other machine geometries. For example, on a
delta system motors are changing speed constantly to keep the nozzle moving in a
horizontal line at a constant speed. Franklin Firmware limits the motor speed and
acceleration so it is able to avoid missing steps even when the tool is at the edge
of the build volume where one motor must move a large distance to effect a small
amount of distance by the tool. Franklin Firmware accomplishes this without slowing
the system down when it is more near the center.

Setting limits on acceleration has a very negative influence on print speed, especially
if there are many short segments, such as in curves with small radii. This is due to a
discontinuity in the direction of the path that has an infinitely large acceleration for
any speed other than zero. To solve this, Franklin Firmware has a setting for how
much to deviate from the requested path. Franklin Firmware will cut the corners
by that amount, and it will use this curve to gradually change the speed of all the
motors.

Figure 2.3 schematically shows how the move comprising a segment is prepared. This
occurs when the previous move has completely finished; in the case of a deviation
from the path, the move has already started at this point (Figure 2.3). For that
reason, every axis stores the distance to move for the current segment, and for the
next segment. After filling those values, the speeds F0 and F1 are limited to what
the axes are set to allow. Then the position where the curved connection should start
is computed and finally all variables are filled with their values.

2.2.8 Probing

For 3-D printing and most other applications, the machine can be calibrated once
with the assumption that the surface is flat and horizontal and it does not require
recalibration. However, for milling PCB circuits, it is very important that the distance
into the surface is tightly controlled. For this purpose, Franklin supports probing
the surface before running a job, and using the measured probe map to correct for
deviations from the horizontal flat ideal. This can also be used for example to print
on top of complex geometries or to repair products.
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Figure 2.3: Schematic representation of how the move comprising a seg-
ment is prepared in Franklin.
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2.2.9 Scripting

The above describes how Franklin is useful for controlling a standalone 3-D printer
or other CNC machine. However, In a scientific environment a machine is normally
part of a larger setup, rather than only a standalone 3-D printer or CNC machine.
Franklin allows tight integration with the rest of the setup by supporting an extension
to G-code, which allows running system commands. This can be used to control other
parts of the setup, for example to record an image with a camera. Because running
system commands is a security risk, this feature is disabled by default and it cannot
be enabled from scripts or browsers, only at startup using a configuration file or
commandline switch.

G-code does not support input other than waiting for a button. Instead, the websock-
ets interface allows direct control over the printer without using G-code. Using this
interface, a script can generate a movement pattern in real time. For example, when a
camera is connected as a tool, a script could use the images from it and continuously
move it to keep a moving specimen centered in the field of view and in focus.

2.3 Quality Control

All compiler warnings are enabled for both Franklin Firmware and the Franklin C
Driver. Stack protection was disabled because the AVR platform does not support
it. Valgrind [26] was used to find buffer overflows and use of uninitialized variables
in the Franklin C Driver.

Franklin has been used extensively on a variety of devices, ranging from a 1-
dimensional syringe pump to 3-dimensional printers. Firebug [27] was used to find
errors in the HTML and Javascript. Franklin Server delivers web pages written in
HTML 5 and Javascript (Ecma 262). Care has been taken to follow the standards;
no browser extensions have been used.

Franklin has been used successfully on a variety of different machines listed above.
In addition, Franklin has been used in conjunction with a metal inert gas (MIG)
weld-based 3-D printer to develop substrate release mechanisms for 3-D printed parts
[24]. Traditionally, metal 3-D printed parts must be removed from a print substrate
with the use of saws or other machining equipment. This removal step is undesirable
as it results in excessive material waste and has additional associated time and cost
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requirements. In order to evaluate possible substrate release mechanisms, Franklin
was used to print aluminum lap shear test specimens on aluminum and steel print
substrates. This study observed that low-cost options, such as boron nitride coatings,
and no-cost options, such as printing aluminum on steel substrates, minimized the
amount of force required to remove metal specimens from a print substrate.
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(2) Availability

2.4 Operating System

Franklin has been designed for and tested on Debian GNU/Linux [28], on i386, amd64
(PC) and armhf (Raspberry Pi [29] and Beaglebone Black [30]) architectures. It
should work on any other GNU/Linux system and possibly other Unix-based systems.
The packages have been built on the latest stable (jessie, or Debian 8) and unstable
versions, and using backports [31] with some packages from jessie, also on oldstable
(wheezy, or Debian 7).

2.5 Additional System Requirements

Franklin is only useful if there is hardware connected to control. It does not have any
other requirements.

2.6 Dependencies

† Python-fhs [32]: module for reading and writing files in the proper place ac-
cording to the Filesystem Hierarchy Standard [33].

† Python-network [34]: module for using network connections, including SSL.

† Python-websocketd [35]: module for hosting a web server that can communicate
using websockets.

24



2.7 List of Contributors

Bas Wijnen (code development).

2.8 Software Location

2.8.1 Archive

Name: Purl.org
Persistent identifier: http://purl.org/NET/mtu-most/franklin

License: GNU Affero General Public License, version 3 or later.
Publisher: Michigan Technological University.
Date published: 09/06/2013.

2.8.2 Code Repository

Name: GitHub
Identifier: https://github.com/mtu-most/franklin

License: GNU Affero General Public License, version 3 or later.
Date published: 09/06/2013.

2.8.3 Language

All code, comments and documentation are in American English.
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(3) Reuse Potential

In its current state, Franklin can be used for controlling 3-D printers and other
manufacturing machines to produce research-grade equipment. Such equipment can
also be controlled with Franklin.

While the web interface is targeted at 3-D printers and similar machines, the code is
written in a way that makes it easy to design an alternative interface. For example,
a syringe pump could be controlled with an interface that allows programming a se-
quence of flows in the way that users of syringe pumps expect. Such a program would
use the websockets interface of Franklin to control the hardware, while presenting the
user with an interface that is more appropriate for the application than the default
CNC interface.

Because it is free software users can improve Franklin and the hardware to fit their
requirements. Franklin is in active development and the developer can be contacted
through github.

Possible improvements, which are considered or being worked on include:

† G-code parsing is presently time consuming and processor intensive. Perfor-
mance can be improved through the use of a compiled language such as C++
instead of Python.

† One-click printing support like that common for 2-D printers would vastly
improve ease-of-use. This functionality is a logical extension to common 3-
D modeling packages (Blender, OpenSCAD, FreeCAD, etc.) and even web
browsers e.g. when browsing objects hosted on 3-D printer aggregate sites such
as Youmagine.com, 3dprint.nih.gov or Thingiverse.com.

† Running a G-code converter (a slicer for 3-D models) as part of Franklin would
allow users to send model files directly to Franklin, again improving ease-of-
use. (This is a requirement for the previous point, but is also a useful feature
in itself.)

† Handling a microcontroller reset or loss of power on the entire system, including
the host computer would be useful for those using 3-D printers in the developing
world, where power is less reliable. It would also be useful when using very
large 3-D printers, such as the Gigabot, which print for many hours to produce
a single object.
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† Because Franklin parses G-code before running it, and because it does this on
a relatively powerful computer, it has the option to thoroughly analyze it and
take action based on the relatively distant future.

† The BeagleBone contains all the features that are needed for the microcontroller
and the host. It would be possible to use just the BeagleBone for the entire
control system.

2.9 Conclusions

Firmware known as Franklin was developed to mitigate limitations associated with
other CNC and 3-D printer control systems. Franklin was successfully demonstrated
on a wide range of RepRap-derived devices: Mendel RepRap, Delta RepRap, Quad
Delta RepRap, OS laser welder, PCB micromill and the open source metal 3-D printer.
Franklin demonstrated the ability to support the maker movement with low-cost
open-source control of three dimensional additive and subtractive fabrication as well
as scientific analytical equipment. Low-cost RepRap 3-D printers are being taken
more seriously in the scientific and industrial worlds. Franklin improves upon this by
allowing more functionality and better integration with new or existing systems.

2.10 Competing Interests

The authors declare that they have no competing interests.

2.11 Acknowledgements

The authors would like to acknowledge valuable discussions with Lars Pötter, and
Markus Hitter on the RepRap mailing list, reprap-dev@lists.reprap.org.

27





Chapter 3

Open-Source Mobile Water Quality
Testing Platform

Abstract1

The developing world remains plagued by lack of access to safe drinking water. Al-
though many low-cost methods have been developed to treat contaminated water, low-
cost methods for water-quality testing are necessary to determine if these appropriate
technologies are needed, effective, and reliable. This paper provides a methodology
for the design, development, and technical validation of a low-cost, open-source (OS)
water testing platform. A case study is presented where the platform is developed
to provide both the colorimetry for biochemical oxygen demand/chemical oxygen de-
mand and nephelometry to measure turbidity using method ISO 7027. This approach
resulted in equipment that is as accurate, but costs between 7.5 and 15 times less
than current commercially available tools. It is concluded that OS hardware devel-
opment is a promising solution for the equipment necessary to perform water quality
measurements in both developed and developing regions.

1The material contained in this chapter was previously published in the Journal of Water, Sanitation
and Hygiene for Development[36]
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Water quality is a major problem in the developing world as roughly 780 million
people are still without safe drinking water [37]. Every year about 760,000 children
die from diarrhea [38] – largely caused by a lack of clean drinking water and sanitation
[37, 39, 40]. There are many low-cost methods to provide drinking water with safe
levels of known biological and chemical contaminants [41, 42, 43, 44, 45, 46, 47, 48, 49,
50]. For example, solar water disinfection (SODIS) has been proven in both bench and
field scale trials to significantly reduce microbial content in contaminated water, and
associated incidence of diarrhea in users, and techniques have been developed to make
SODIS usable in most places in the world [51, 52, 53, 54, 55, 56, 57, 58]. While these
simple water treatment methods have demonstrated efficacy, there has been little
development of simple and inexpensive water quality assess- ment instrumentation.
This sort of instrumentation is required to know whether or not such methods are:
(1) needed, (2) effective, and (3) reliable (e.g. in the case of filter blinding). They
must have a minimal cost in order to be deployed in the field in developing regions.

One promising method to obtain high-quality scientific tools while radically reducing
costs is to use an open-source (OS) hardware approach [10, 59]. Due to the tremendous
success of free and open source software development [60], the concept of open source
has spread to areas of both appropriate technology for sustainable development [61,
62, 63] and other hardware [64] such as 3-D printers [2, 3, 20], which in turn can be
used to fabricate OS scientific tools [10, 59, 65]. This approach was used recently
to combine the OS Arduino electronics prototyping platform and the RepRap 3-D
printer to make an OS colorimeter, which could be used for water testing using the
chemical oxygen demand (COD) method [66]. This open-source hardware (OSH)
approach is expanded here to create a platform which could be used for a collection
of water tests.

This paper provides a methodology for the design, development, and technical vali-
dation of an OS water testing platform. A case study is presented where the plat-
form is developed to provide both the colorimetry for biochemical oxygen demand
(BOD)/COD and nephelometry to measure turbidity using method ISO 7027 [67].
This approach is evaluated for its potential to reduce the cost of equipment to per-
form these measurements of water quality and the results are discussed to provide
conclusions about the future of water testing in developing regions.
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3.1 Methods

3.1.1 Design Methodology

The schematic for the as-built OS water testing platform that was designed to perform
colorimetric COD/BOD and nephelometry is shown in Figure 3.1.

The OS water testing platform case design was wholly completed in OpenSCAD
2013.06.09, a freely available, OS, script-based solid modeling software. The assem-
bled case with electronics is shown in Figure 3.2 and the design of the case body is
shown schematically in the inset. The case was printed with a RepRap 3-D printer
with black poly-lactic acid media so as to minimize stray light inside the detection
area.

The electronics are based upon the OS Arduino prototyping platform, which is de-
signed to use ‘shields’ or customized electronic boards that can be pressed into place
and that typically come with software libraries so as to facilitate integration of board
features into the custom code developed by the end user. As can be seen in Figure 3.1,
multiple LEDs and light intensity sensors are connected directly to the Arduino’s digi-
tal inputs and outputs. The microcontroller contains flash memory to store a program
for performing the measurement and providing a user interface using a shield con-
taining a character LCD screen and navigation/control buttons.

A total of three discrete electronic components are required for the nephelometer
circuit (in addition to the Arduino and the shield); an additional two components
are necessary for the colorimeter functionality, as shown schematically in Figure 3.1.
The device’s firmware (https://github.com/mtu-most/colorimeter) provides an
easy to navigate hierarchical menu system for selection of device functions. The
firmware can be changed and rewritten to the device using the Arduino IDE, which
is distributed as free and open source software from the Arduino website (http://
www.arduino.cc/).

There are multiple standards for measuring turbidity [68]. The USEPA method 180.1
(EPA, 1979) was the first standard promulgated, but it suffers from poor reproducibil-
ity [68, 69]. A newer standard is maintained by ISO [67], which tries to avoid some
of the problems of the EPA method. It requires an infrared photodiode instead of a
tungsten lamp, which improves measurement of turbidity resulting from the presence
of biological material, which may not be measured by the USEPA method. The ISO
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Figure 3.1: Schematic of the OS mobile water quality testing platform.

Figure 3.2: OS water testing platform with the assembled case, electronics
and an inset schematic of case design in OpenSCAD.
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method was chosen for this design as it has demonstrated greater reproducibility, uti-
lizes a low-cost, long-life and less energy intensive diode light source and has greater
sensitivity when biological material is present in the sample.

The light intensity sensor used is a TAOS TSL235R light-to-frequency converter.
This device produces a digital signal with a frequency proportional to the amount
of light that it detects. The Arduino’s internal counter units are connected to it,
permitting measurements up to 8 MHz. Both of the Arduino’s two counter input
pins are connected to different sensors. During measurement, one sensor measures the
intensity of the LED directly (reference intensity) and a second sensor measures either
transmitted or diffuse reflected light. Measurement of the reference (LED intensity)
and the transmitted/reflected light intensities are made simultaneously. The reference
measurement is used to compensate for any changes in illumination intensity, which
can occur due to fluctuations in supply voltage, temperature or aging of the diode.

Because this device is similar to the OS colorimeter [66], both can be combined into
one device. To include colorimetric capability, only one additional LED and light
intensity sensor are required, the cost of which is negligible.

3.1.2 Performance measurement methodology

The performance of the COD colorimeter was reported earlier [66] and so was not
investigated as part of this research.

Turbidity standards (Hach StablCal Turbidity Standards Calibration Kit) were used
to calibrate both the OS nephelometer and a Hach 2100P portable turbidimeter,
an instrument in the same category as the OS nephelometer. Formazin Turbidity
Standard (4,000 NTU) was diluted with distilled water to produce samples having
turbidities of 2, 4, 40, 100 and 200 NTU and each of these was analyzed in triplicate
with the two instruments.

3.2 Results and Discussion

The results from calibration and a least squares fit are shown in Figure 3.3. Measure-
ments from the two calibrated instruments are compared and are shown in Figure 3.4
with the line indicating perfect agreement between the two instruments (line of unity).
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Figure 3.3: Calibration of the OS nephelometer. The line shown is the
result of the calibration.

A device for measuring turbidity is presented, which in combination with other tests,
is useful for determining whether water is safe for drinking. It has a direct appli-
cation in determining the exposure times necessary for safe drinking water for those
using the SODIS method or UV disinfection. This is especially a concern in devel-
oping countries, where people do not have money to buy the relatively expensive,
commercially available nephelometers, which range in price from $600 to $1,200, for
equivalent quality to what is demonstrated here. The OS device performs as well as
the commercial version it was compared to in this study, and for under $80.00, costs
7.5 to 15 times less. Low-cost and localized fabrication and maintenance of the device
make it feasible for communities to do scientific measurements at both distributed
and centralized water treatment facilities without depending on external support.
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Figure 3.4: Comparison of the OS nephelometer and the Hach 2100P.
Points which have identical readings on both devices are on the line.

3.3 Limitations and Future Work

The drawbacks to an OSH approach to scientific tools are outlined in the ‘Open
Source Lab’ [59] and found to be without merit, particularly concerning the lack of
incentives for innovation. The one aspect of OSH that is very important for scientists
is accuracy, which has been demonstrated for this particular device with the results
of this study. For any other OSH for science a similar study is necessary.

It should be pointed out that BOD/COD and turbidity are not enough to ensure
safe water alone. The device brings the price of a nephelometer down by an order of
magnitude. With the simple addition of more sensors, at minimal incremental cost, it
replaces more devices designed to perform other water quality test methods, breaking
the profit-by-specialization paradigm that drives commercial instrument development.
In this way, a complete water test- ing lab may be built in pocket format in the future,
containing not only turbidity and COD, but also pH, solid dissolved substances,
temperature, total dissolved solids, total suspended solids, dissolved oxygen, oxidation
reduction potential, ultraviolet transmittance and BOD.
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Because the hardware and software are all OS, this is an ideal platform for adding more
sensors or actuators to increase functionality. The software for controlling the new
part can simply be added to the existing code base and it will work. This means any
specialized measurement device can be built with relatively little effort. For instance,
the device as tested does not contain the extra sensor for doing a ratio measurement
shown to improve sensitivity by accounting for absorption [69], but this sensor can
easily be added because the software is open source; the user who is interested in this
feature can implement it without help from an external manufacturer.

Because the design of the platform developed here is so flexible, many extensions are
possible to make it more useful. For example, to allow the device to be used in places
without access to a power grid for long periods of time, it can be charged with a
small, solar photovoltaic cell or hand crank. To make it more flexible to use, it could
be helpful to add wireless networking support, which would also reduce the cost as it
would allow removal of the display and buttons and instead use the ubiquitous smart
phone to control it. The phone could then be used to connect to several devices,
and integrate several parts of an experiment, or do multiple separate experiments
simultaneously. Using the power of 3-D printing the device could be configured as a
phone attachment or could be used in conjunction with the OS tricorder project [59].
Future work is also needed to test the platform in the field outside of controlled labo-
ratory conditions. In addition, future work is needed to gauge the social acceptability
of the device for any intended application, real world acceptance and if necessary
marketing. To determine if the tests are effective, both field and clinical trials may
also be useful. Because the software is open source, the communication protocol is
automatically public as well. As an addition to that, it would be useful to design
an open standard, which can be used by controlling computers to communicate with
any such measurement device, without even knowing what type of measurement it is
doing. Due to the low cost, this device, or a variation of it, would be very suitable
for educational settings, which often function under severe budget constraints.

3.4 Conclusions

The results of this study have shown that a valuable device for testing water can be
built using OSH and software, for a fraction of the price of commercial options. Such
a device not only matches the performance of commercial devices, but it is also ex-
pandable to enable other testing procedures at minimal additional cost. This method
of developing and fabricating scientific testing equipment is valuable to all scien- tists,
but may be particularly attractive to anyone in need of water-quality testing who, for
financial reasons, would not have access to the instrumentation necessary.

36



3.5 Acknowledgements

The authors would like to acknowledge helpful discussions and input with S. Feeley,
D. Perram and crowd-sourced funding from supporters through Superior Ideas.

37





Chapter 4

Open-source Syringe Pump
Library

Abstract1

This article explores a new open-source method for developing and manufacturing
high-quality scientific equipment suitable for use in virtually any laboratory. A syringe
pump was designed using freely available open-source computer aided design (CAD)
software and manufactured using an open-source RepRap 3-D printer and readily
available parts. The design, bill of materials and assembly instructions are globally
available to anyone wishing to use them. Details are provided covering the use of the
CAD software and the RepRap 3-D printer. The use of an open-source Rasberry Pi
computer as a wireless control device is also illustrated. Performance of the syringe
pump was assessed and the methods used for assessment are detailed. The cost of
the entire system, including the controller and web-based control interface, is on the
order of 5% or less than one would expect to pay for a commercial syringe pump
having similar performance. The design should suit the needs of a given research
activity requiring a syringe pump including carefully controlled dosing of reagents,
pharmaceuticals, and delivery of viscous 3-D printer media among other applications.

1The material contained in this chapter was previously published in PLOS One [13].
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4.1 Introduction

Free and open source (or libre) technological development is a fundamentally new,
decentralized, participatory and transparent system to create both software and hard-
ware. It stands in sharp contrast to the closed box, top-down, and secretive standard
commercial approach to development [60]. As much of the Internet now relies on
free and open-source software (FOSS), open source is becoming the norm in software
development [70, 71]. FOSS has been so successful that for many applications it
is the defacto standard, with 94% of the World’s top 500 supercomputers, 75% of
the top 10,000 websites and 98% of enterprises using open-source software [72, 73].
FOSS is computer software made available as source code (open source) that can
be used, studied, copied, modified, and redistributed without restriction, or with re-
strictions that only ensure that further recipients have the same rights under which
it was obtained [74]. FOSS is in widespread use in science and engineering and has
driven down the cost of numerical simulation in a number of fields ranging from
psychotherapy [75] and medicine [76, 77], neural circuit reconstruction [78], genomic
sequences annotation [79], education [80, 81], and ecology [62]. In addition, it has
been proposed as a solution to the intellectual property tragedy in nanotechnology,
which has slowed progress and deployment in the field [11, 82, 83, 84]. Even greater
cost reductions for science, however, can be found with the application of open source
hardware [10, 59, 65, 66]. The development of open-source hardware has the potential
to radically reduce the cost of performing experimental science and put high-quality
scientific tools in the hands of everyone from the most prestigious labs to rural clinics
in the developing world [10, 16, 59].

This article introduces a low-cost open-source family of syringe pumps. Creation of
parametric open-source designs using an open-source computer aided design (CAD)
package is described to produce customized syringe pumps for scientific and/or health
applications. Details are provided for use of open-source RepRap 3-D printers to
fabricate the components. An open-source Rasberry Pi computer used as a wireless
control device is also illustrated. The performance of the pumps produced is assessed
and the method’s advantages, known limitations and potential for radically reducing
the cost of doing science are discussed.
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4.2 Materials and Methods

The low-cost open-source family of syringe pumps are completely customizable al-
lowing both the volume and the motor to scale for specific applications. The bill of
materials for the three variations of the syringe pump are shown in Table 4.12. The
user/designer must first determine the size of motor to enable that application. The
appropriate motor size can be selected once the required torque is known following
[85]. A bigger motor provides more torque, but necessitates larger printed compo-
nents. A bigger syringe allows more fluid to be pushed out, both per second and in
total, but decreases the precision of the device. A simple change to the OpenSCAD
script specifying the motor selection defines the dimensions for the printed parts.

4.3 OpenSCAD and Open-source 3-D Printing

Open-source and freely available OpenSCAD is script-based, parametric CAD soft-
ware possessing powerful 3-D modeling capabilities [86]. It is not graphical; models
are created by adding and subtracting primitives to produce the desired shape. It
supports creation and extrusion of polygons and poly lines, so can be used to cre-
ate very complex shapes. The script language is based upon C++ and only a few
methods are required to produce very complex designs, so the learning curve is short,
albeit steep for those not possessing programming experience. The scripts are written
such that designs are parametric — the design can easily be altered by changing key
dimensions. For instance, the syringe pump script can be altered to produce parts
fitting different motors simply by specifying which motor to design for. The script
written for the syringe pump is available online [87]. Models rendered in OpenSCAD
are typically exported as stereolithography (stl) files for the first step in producing a
3-D print using any of the RepRap 3-D printers currently available. Images of syringe
pump parts rendered by OpenSCAD and photographs of the printed parts are shown
in Figure 4.1.

RepRap printers almost universally require g-code, a human-readable file format spec-
ifying the path the print head must follow to produce a physical object from a soft-
ware model. G-code is produced by software referred to as a “slicer”, which, as the
name implies, slices an stl model into layers each having the same thickness in the
z-direction. Cura was used to slice the syringe pump stl models [88]. Cura is also
open-source and freely available.

2The Raspberry Pi has decreased significantly in price since the publication of this paper.
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Figure 4.1: 3-D printable parts for the open-source syringe pump.
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Table 4.1

Bill of Materials for three examples of the open-source syringe pumps. All
parts are printed in PLA with 20% infill. The cost of a dual NEMA17

pump is twice that of a single NEMA17 pump, except only one Raspberry
Pi is needed.

Part Cost (US$)
Printed Motor End 1.33/1.91
Printed Idler End 1.40/1.88
Printed Carriage 1.59/1.58
Printed Syringe Clamp 1.35/3.27
Printed Plunger Wedge 0.60
NEMA11/NEMA17 motor 15.95/19.95
M3x40 bolt (4x) 0.35
M3x16 bolt (4x) 0.51
M3x12 bolt (6x) 0.64
M3 washer (8x) 0.14
M3 nut (10x) 0.10
M5 nut (5x) 0.09
M5 threaded rod (1 m) 5.03
6 mm smooth steel rod (1 m) 11.03
lm6uu Linear bearing (2x) 4.66
635zz Ball bearing (2x) 1.50
Coupler 3.49
Raspberry Pi 40.00
Total 89.76/96.72

The parts were printed with RepRap 3-D printers. Two different printer designs, a
Cartesian [89] and a delta printer [90], were used to produce the parts out of 1.75 mm
polylactic acid (PLA) filament. The printer design employed is ultimately irrelevant
as both produce shapes using exactly the same method and materials and are different
only in the way the print head is moved. Both printers were equipped with hot ends
having 0.5 mm nozzles and prints were sliced at a layer height of 0.25 mm and a print
speed of 60 mm/s. Parts were printed in plates, that is all of the printed parts needed
to assemble a syringe pump were printed in one printer cycle.

RepRap printers typically interface with a host program running on a computer but
can also run independently, reading g-code stored on a memory card. The syringe
pump was printed using a host computer running ReptierHost [91] another freely
available, open-source software written specifically for RepRap and RepRap-like 3-D
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printers3. For detailed instruction on the construction and operation of the printers
see [89, 90].

4.4 Syringe Pump Control and Interface

The syringe pump is controlled by an open-source Python program developed here [87]
running on a Raspberry Pi, which is an ARM based computer running GNU/Linux
[29, 92]. The Raspberry Pi is an inexpensive, credit card-sized computer having inte-
grated networking, sound, video, USB host and most importantly, exposed and readily
accessible I/O lines. The wiring diagram for the syringe pump controller (Figure 4.2)
utilizes a single Pololu A4988 stepper controller, which controls the stepper motor
that drives the syringe pump. The Raspberry Pi is installed with the standard Rasp-
bian operating system [92]. A custom web server is run, which serves a web page
via either wired network or wirelessly via a wireless USB adapter attached to the
Raspberry Pi’s USB port. Any computer on the network can then control the pump
through this web page (Figure 4.3).4

4.5 Calibration and Performance Assessment

Methodology

The pump is calibrated by setting it up with an initial calibration value set to 1
mL/mm. A small arbitrary volume appropriate for the size of syringe used is pushed
twice from the syringe and the actual value of the second push is measured. This is
done to partially account for drops staying on the end of the syringe. This number is
divided by the amount the syringe was told to push out, the resulting number goes
into the calibration window. The sequence is repeated three times to ensure correct
calibration.

3Since the publication of this paper, the author of Repetier Host made the program closed source,
but there are many open source options available. One of those options is Franklin, which is
described in Chapter 2.

4Figure 4.3 contains a screenshot of the interface in a web browser. Window decorations of the
Iceweasel web browser and Gnome desktop environment are used under the Fair Use exception of
copyright law. Fair Use is applicable, because the illustration is similar to a quote, both Iceweasel
and Gnome are freely available to everyone, the screenshot is an insignificant part of the programs
and reading this dissertation is not a substitute for using those programs.
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Figure 4.2: Electronic schematic of Open-Source Syringe Pump.

The force produced by the lead-screw actuated design was measured by placing the
assembled syringe pump with a steel rod in place of the syringe in a frame along with
with a 30 kg-capacity scale. The pump was oriented such that the motor end sat upon
the scale and the steel plunger faced upward, pressing against a fixed platform. The
pump motor was advanced until it stalled or a component failed and the maximum
force produced was read off the scale display.

The pump’s maximum delivery rate is a function of the speed at which the motor
stalls. Stall speed was determined by increasing pulse rate to the motor until it stalled
and then decreasing to the point where it ran again, establishing the maximum speed
and therefore maximum delivery rate.

Precision was tested by repeated delivery of a preset volume (fixed by setting the
total number of motor steps) of distilled water onto a Mettler AE100 scale having a
readability of 0.1 mg. The relative humidity within the weighing chamber was main-
tained in a saturated state by placing containers of distilled water in it, permitting it
to equilibrate and then ensuring that it was kept well sealed for the duration of the
assessment. Performance of both the NEMA11 and NEMA17 pumps was assessed at
different microstepping settings.
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Figure 4.3: Screenshot of Syringe Pump Web Interface.

4.6 Results

Three different pumps were assembled, all of which are relatively easy to construct
from the parts shown in exploded view in Figure 4.4. Assembled pumps are shown
in Figures 4.5, 4.6 and 4.7 for the Nema 11, Nema 17 and dual Nema 17 pumps,
respectively. The dual version consists of two identically sized pumps connected in
parallel to the motor controller (Figure 4.8)5. The pumps are driven synchronously
at the same rate. The controller has the capacity to drive more than one pump
simultaneously if required. If one of the connections from the connector to the pump
shown in Figure 4.8 is reversed then the two pumps will go in opposite directions.

The force developed by the OS syringe pump depends on the motor used. When push-
ing on an immovable object, the NEMA17 version produced 200 N, and the NEMA11
version produced 93 N. Force did not appear to be affected by the microstepping rate,
probably due to the nature of lead-screw actuation that is inefficient at translating
force into rotation, particularly with the thread pitch and profile used in this design.

5Both serial and parallel connections are possible. The figure shows the motors connected in series.
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Figure 4.4: Exploded view of Open-Source Syringe Pump.

Figure 4.5: Digital Photograph of Open-Source Syringe Pump version
Nema 11.

Figure 4.6: Digital Photograph of Open-Source Syringe Pump version
Nema 17.

47



Figure 4.7: Digital Photograph of Open-Source Syringe Pump version of
the Dual Nema 17 Pump.

Figure 4.8: Digital Photograph of the Dual Pump connection.
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Table 4.2

Coefficient of variation as a function of microstepping for NEMA 11 and
NEMA 17 open-source syringe pumps.

Microstepping
1 4 16

NEMA11 1.17% 0.56% 1.55%
NEMA17 3.66% 2.13% 2.26%

The force developed was sufficient to cause damage to some of the printed parts, none
of which resulted in impairment and new parts could quickly be printed and replaced.

When calibrated with a 25 mL syringe, the NEMA17 version yielded a maximum
delivery rate of 2.1 mL/s and the NEMA11 version yielded 1.4 mL/s when cali-
brated with 10 mL syringe. Accuracy was +/-1% for the NEMA11 and +/-5% for
the NEMA17 measured in 1 mL increments. Precision was found to be relatively
insensitive to microstepping for both the NEMA11 and NEMA17 (Table 4.2). The
coefficient of variation when delivering approximately 1 mL of distilled water was
about 3% or less regardless of microstepping and it is very likely that precision is
actually better than reported as the measurement method was limited to the volume
of a single drop (e.g. ≈20 micro Liters). It is unlikely that microstepping need be
employed as the 200 step/revolution motors coupled with a properly sized syringe
should provide virtually any resolution demanded.

It is clear that using open-source methods reduced the cost of the pumps considerably
from commercial pumps as summarized in Table 4.3. The single syringe pumps have
a part cost under $100 using hardware from online retailers. This includes the Rasp-
berry Pi controller that permits control of the syringe pump from virtually every web
enabled device available. Commercial syringe pumps can cost anywhere from $260 to
over $5000 as seen in Table 4.3.

Overall, using completely open source methods, this pump is economical, user friendly,
and accurate. Even considering the approximate $500 price of the RepRap 3-D
printer, the value of this approach to design and manufacturing far exceeds that
of commercial units, particularly for resource starved laboratories.
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Table 4.3

Specifications for the open-source syringe pump are shown compared to
commercial pumps.

Name Price Speed Size Force Acc. Repr.
(US$) (mL/s) (mL) (N) (%) (%)

MOST OS Syringe 90 1.4 10 93 1 0.6
Pump NEMA11
MOST OS Syringe 97 2.1 25 200 5 2.1
Pump NEMA17
MOST OS Dual 154 2.1 25 200 5 2.1
Syring Pump NEMA17
NE-300 “Just Infusion” 260 0.417 60
syringe pump
B.Braun/McGaw BD 360 435 0.1 3
Syringe Pump
GenieTouch 675 3.68 169.13
Syringe Pump
NE-4000 Programmable 928 2.0 60 444.82 1
Dual Syring Pump
Med Associates 1343 0.119
PHM-111EC
Fusion Touch 400 1350 0.167 10 222.41 0.35 0.05
Syringe Pump
Fisher Scientific 1509 0.144 60
Single Syringe Pump
Sono Tek 1800 0.5 60
Syringe Pump
Cole Parmer Dual 2606 2.45 140 0.5 0.2
Syringe Infusion Pump
Cole Parmer Continuous 3947 1.17 60 177.93 1 0.1
Flow Syringe Pump
Gilson 402 5000- 2 25 1.8 0.8
Syringe Pump 5500
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4.7 Discussion

As has been demonstrated previously, the open-source ecosystem lends itself well to
research endeavors, especially with regards to maximizing the value of a research dol-
lar [10, 59, 93, 94]. This is particularly true when designs for desired components,
or even designs for similar components to those desired, are made freely available for
use and customization [10, 59, 65]. Armed with open-source 3-D printers and hard-
ware, freely available and open-source software and designs, researchers can design
and manufacture bespoke apparatus at a small fraction of the price of commercial
offerings. The ability to alter and tune designs to produce apparatus that better align
with research goals eliminates “making do” with what is available commercially. By
way of example, this paper presents an elegantly simple design for a syringe pump
that performs admirably and should serve as a good foundation for derivation of
better and more useful apparatus for specific research goals.

The simplicity of the design coupled with ready access to its source makes it very
easy to customize and construct; even first year students with limited exposure to
such activity are able to assemble a complete, working system. The cost of the entire
system, including the controller and web-based control interface, is on the order of 5%
or less than one would expect to pay for a commercial syringe pump having similar
features and performance. The platform is not limited to just use as a syringe pump;
it is a relatively high precision linear actuator that can easily be modified for use for
positioning, i.e. for stages for microscopy. Similarly it could be used as a head for
3-D printing with viscous media. 3-D printing and liquid handling with a syringe
pump could be combined as has been done recently by Kitson et al., to produce user-
friendly reactionware for chemical synthesis and purification [63]. Using open-source
RepRap 3-D printers and the open-source syringe pump developed here chemists not
only only have complete control over every aspect of hardware, but can also set up
the experiments for a fraction of the cost of commercially available tools.

Incremental improvement of designs in the open-source ecosystem tends to occur
organically [59]. It is therefore reasonable to expect that as the population of the
interested audience grows, the rate of innovation increases, perhaps at a much greater
rate than could be expected in commercial R&D centers. This incremental approach
to development not only takes place at a rapid pace, it spreads the cost of development
over the entire user/developer community with the currency being predominantly the
time spent by the individual developers. Since freely available open-source designs can
be made available to the entire globe, even small time investments in development can
have significant impact. This is especially important given that the tools developed
can be considered appropriate technology and are of particular interest to poorly
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funded laboratories such as those in undeveloped and developing economies [63].
Development of open-source designs can, from that perspective, be considered a form
of philanthropy, although the developer also benefits by the product of his work and
the improvements made to it by others [59].

The design presented here is deliberately simple; it is intended to demonstrate the
utility and efficiency of the open-source method of development and provide one start-
ing point for derivation of improved designs. There is (by design) ample opportunity
for improvement and future work. A syringe pump can be used for a variety of ap-
plications requiring carefully controlled dosing of reagents, pharmaceuticals, delivery
of viscous 3-D printer media, etc. All of these applications have specific requirements
that this endlessly customizable design can be tailored to meet. For instance, mi-
crostepping may not be required, making a less expensive motor controller suitable
and driving the cost of the syringe pump even lower.

4.8 Conclusions

An open-source and freely available design for a simple to build and customize syringe
pump has been provided and working pumps have been constructed and evaluated.
The design performs well as compared to much costlier commercial models while
permitting virtually endless customization and so should suit the needs of a given
research activity requiring a syringe pump. Only readily available, open-source hard-
ware and software were used for the design and manufacture of the pumps, further
validating application of open-source methodologies for development of research-ready
laboratory equipment.
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Chapter 5

Free and Open Source Automated
3-D Microscope

Abstract1

Open-source technology not only has facilitated the expansion of the greater research
community, but by lowering costs it has encouraged innovation and customizable
design. The field of automated microscopy has continued to be a challenge in accessi-
bility due the expense and inflexible, non-interchangeable stages. This paper presents
a low-cost, open source microscope 3-D stage. A RepRap 3-D printer was converted
to an optical microscope equipped with a customized, 3-D printed holder for a USB
microscope. Precision measurements were determined to have an average error of
10 µm at the maximum speed and 27 µm at the minimum recorded speed. Accu-
racy tests yielded an error of 0.15%. The machine is a true 3-D stage and thus able
to operate with USB microscopes or conventional desktop microscopes. It is larger
than all commercial alternatives, and is thus capable of high depth images over un-
precedented areas and complex geometries. The repeatibility is below 2-D microscope
stages, but testing shows that it is adequate for the majority of scientific applications.
The open source microscope stage costs less than 3% to 9% of the closest proprietary
commercial stages. This extreme affordability vastly improves accessibility for 3-D
microscopy throughout the world.

1The material contained in this chapter has been accepted for publication in the Journal of Mi-
croscopy.
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5.1 Introduction

The free and open source software (FOSS) community has demonstrated that by fa-
cilitating participation in technical projects with little to no startup costs, meaningful
contributions from the community can be made [95, 96, 97]. FOSS is also referred to
as libre software to emphasize development founded on freedom as opposed to price.
This scaled collaboration results in superior design with lower associated cost due
to the continuous improvement in software code, thereby making it more robust and
innovative [95, 98]. FOSS has shown to be more reliable and relevant to users as
they are co-developers [99]. For instance, 97% of the world’s supercomputers operate
on FOSS GNU/Linux [100]. The success of open source software has provided an
alternative to expensive and proprietary systems by allowing for reduced research
and development costs [96] as well as more flexible design [101]. Open source devel-
opment outside of purely software has established a particularly vibrant 3-D printing
community around the self-replicating rapid protoyper (RepRap) 3-D printer family
[2, 3, 4, 93, 102]. FOSS and open hardware design can be combined with RepRap 3-D
printing for distributed digital fabrication of low-cost scientific equipment [10, 103] in-
cluding: colorimeters [66], nephelometers [36], turbidimeters [104], liquid autosampers
[105], microfluid handlers [106], biotechnological and chemical labware [107, 108, 109],
mass spectroscopy equipment [110], automated sensing arrays [111], phasor measure-
ment units [112], optics and optical system components [65], DNA nanotechnology
lab tools [113] and compatible components for medical apparatuses [114]. The open
sharing of digital design has reduced capital cost to an unprecedented 90-99% decrease
from the cost of conventional equipment [59, 115]. The lateral scaling of shared de-
sign has created substantial value [116] resulting in hundreds and even thousands of
percent return on investment for science funders [117]. This open source development
methodology holds some promise for improving accessibility of automated microscopy.

The field of automated microscopy faces a number of challenges in becoming more ac-
cessible to those without extensive training or funding. Automated microscope stages
are typically costly and limited in use due to the lack of adaptability. However, the
quality of digital sensors has significantly improved, combined with a decrease in cost,
which make the option of using an open source approach technically possible. Further-
more, the associated software, traditionally a proprietary component of automated
microscopy, has begun to transition into open source programs such as ImageJ and
iMSRC. Not only has automated microscopy aided in improving the reproducibility
of results in the greater research community, but it has allowed more individuals to
learn proper operation and perform more complex analysis techniques.

Although advances have been made in creating inexpensive microscopes [118, 119],
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established automated microscope models remain essential for scientific research such
as the detection of tumor cells in bone marrow [120], pollen analysis [121], and there-
dimensional examination of cellular structures and macromolecules [122]. The cost
of sophisticated instrumentation is in the thousands or tens of thousands of dollars,
creating a significant barrier to joining the scientific community in those fields. De-
creasing that cost not only enables scientists with limited funding and resources to
perform higher quality research, but it allows everyone in the scientific community to
allocate funding to other needs [115]. Open source space has provided a new platform
of innovation for automated microscopy [119]. By taking advantage of existing tools
such as Raspberry Pi, Arduino controllers, 3-D printed parts and beam structure, ad-
vancements can be made toward creating a generic system of ultimately customizable
automated microscopes [119]. In addition, the RepRap 3-D printer has been shown
to be a practical low-cost scientific 3-D stage [123].

This study looks to build on the ongoing developments in automated microscopy in
the open source community. A RepRap 3-D printer was converted to a 3-D micro-
scope, and as this study is released as free and open source, all interfaces are readily
available and can be easily integrated into new or existing experimental setups. The
3-D microscope is validated using experiments to compare its accuracy and preci-
sion to commercial alternatives. In addition, the system is demonstrated for photo
stitching and focus stacking. Finally, the open source 3-D microscope is compared to
proprietary commercial tools and the results are presented and discussed.

5.2 Background

Automated microscope stages allow for examination of multiple specimens by facil-
itating stage movement in the x, y and z directions. Stages are typically for either
upright or inverted microscopes, however as they are not adaptable for both and are
frequently designed for specific microscope models, they have limited practical use.
Stage sizes range from 135 mm x 85 mm to 275 mm x 175 mm, and both repeatability
and reproducibility are less than one micron. Stages of these parameters, however, can
cost the user anywhere from US$4,900 [124] to US$16,000 [125]. This cost does not
include additional costs associated with the software package and hardware required
to mount the stage on the microscope.

The field of automated microscopy has seen a number of recent developments, in part
due to the advancement of digital sensors. The increase in quality coupled with the
decrease in cost has played a significant role. Automated microscopy contributes in
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a meaningful way to the greater research community by making results more repro-
ducible [126], enabling less-trained operators to obtain quality measurements [127],
and facilitating more complex analytical methods such as neural-based pattern de-
tection [128]. While the software used to control automated microscopes and analyze
measurements has traditionally been proprietary, free and open source options have
since matured. iMSRCS is a software developed in recent years that combines flexi-
bility with ease of use in order to enable various applications [129]. ImageJ is another
software tool that allows for automation of experiments with the help of scripts and
plugins [130]. It can also be combined with MicroManager to control an automated
microscope [131].

5.3 Experimental

A delta RepRap derived from the MOST delta, called the Athena, is robot with
exchangeable tools that can be used as a 3-D printer [22, 23]. Smaller tools can be
mounted on the end effector, enabling movement over a static object. The platform
can also be mounted to the end effector, allowing for bigger tools such as a metal
welder to be mounted in a stationary position on top of the machine [23]. For use
in microscopy, a small USB microscope can be mounted as a mobile tool or a heavy
microscope can be mounted as a stationary tool.

The RepRap was controlled using Franklin [18] which allows external scripts to control
the machine, thus allowing integration of the microscope in a larger experimental
setup [1]. For example, the microscope can be moved vertically to keep a moving
object in focus, or horizontally to keep it in the view. A script that is available at
[18] enables a game controller to move the tool. This allows the user to control the
microscope without looking at the keyboard or screen, instead providing a full screen
view of the microscope output. Four positions can be stored and linked to buttons
on the game controller for ease of revisiting.

Several experiments were performed in order to demonstrate the capabilities of the
device. To test the precision of the positioning for long moves, a calibration slide
with a dot of 70 µm diameter was positioned at two positions on the platform; one
in the center at (0,0) and one at (0,100). The microscope was then moved to a
different location at the edge of the range before being repositioned to the calibration
dot. The position of the dot in the microscope image was recorded each time. The
measurement was performed using 36 points on the edge of the range, which were
equally spaced with a spacing of 10 degrees. Every position was measured at three
speeds: 2, 20 and 60 mm/s.
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To test the precision of the positioning for short moves, the microscope was focused on
the dot and moved over a circle with a radius of 50 µm in steps of 10 degrees. These
steps were small enough to ensure that the dot remained in view of the microscope.
The dot position was recorded after every move, and compared to the target values.
A statistical analysis was then performed on the data. For each recorded image, the
position of the dot was determined. For each dot, the distance and direction of that
dot compared to the average of all dots was determined.

To test the accuracy of the device, a Vernier caliper with a precision of 0.005 mm was
used to measure the length between the corners of a piece of copper. The microscope
was then moved to position each of the two corners at the same position as noted in
the recorded image. The associated movement required was measured and compared
to the actual length of the edge.

The setup of the experimental procedures was flexible due to the ability to script
Franklin. To demonstrate this, two experiments were automated. First, an object
with significant height was placed on the platform and images were recorded at several
heights. Those images were combined into a single image with photo stacking software
[132]. Second, a large flat object was placed on the platform and images were recorded
at different horizontal positions with some overlap. Those images were combined into
a single image with photo stitching software Fiji, which is imageJ with many plugins
pre-configured [133].

The full bill of materials and SCAD files for the 3-D printed parts are released under
and open source license here [134].

5.4 Results and Discussion

5.4.1 Results

The fully assembled instrument is shown in Figure 5.1, with the lead screws, anti-
backlash springs, endstops and USB microscope labeled. A holder was designed
in OpenSCAD [86] and 3-D printed as shown in Figure 5.2. This holder was then
supplemented with ball bearings in order to accommodate a USB microscope. This
capability highlights the ability to three-dimensionally print custom parts on the same
machine adapted for optical microscopy.

57



Lead Screw Motors

USB Microscope

Anti-backlash Springs

End stops

Figure 5.1: The open-source 3-D microscope stage with USB microscope.

The microscope can also work in mobile sample mode (or stage mode) by removing
the tie rods from the down position and placing them in the up position on the
carriages. Stage mode moves the sample underneath a conventional microscope as
shown in Figure 5.3.

The 3-D microscope stage electronics is comprised of a Beaglebone Black and Melzi
(Ardunio compatible) board. The electronic schematic for the system is shown in
Figure 5.4. The three stepper motors that create the movement of the 3-D microscope
are controlled by the Melzi, which is itself run by the Beaglebone Black. A computer
is used to directly control the USB camera. This computers is also connected via the
network to the Beaglebone Black. The machine is similar to the open-source multi-
material additive and subtractive MOST delta RepRap [22] and the more advanced
open source derivative called the Athena [135]. The main differences between this
machine and those are that wood support is replaced by aluminum tubing and that
the carriages are not moved by belts, but by lead screws with anti-backlash nuts.
Detailed build instructions for the Athena are available on-line [135] and can be used
as a guideline for building this machine.

The 3-D microscope movement is controlled by Franklin, the interface of which is
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A B

Figure 5.2: A) OpenSCAD STL rendering of USB microscope holder, B)
Assembled USB microscope holder with ball bearings and screws.

shown in Figure 5.5.2 It runs on the Melzi and the Beaglebone, and is accessed
through a web browser. In the top left is a list of available G-Code to execute. Below
that are the controls for moving the microscope. In the top right are control buttons
and below that is a graph for all the temperature sensors; that is used when Franklin
is controlling a 3-D printer. For the microscope, this graph is empty. All setup,
configuration and calibration is also performed from this interface.

Photostacking while moving the microscope in the z plane is demonstrated in
Figure 5.6, where Figure 5.6a shows a flower with the bottom in focus and 5.6b with
the top in focus. These were part of a stack of 10 images. Figure 5.6c shows the final
image of the stacking technique results in an image of greater depth than any of the
original images. The result is thereby of greater value to the researcher.

Figure 5.7 demonstrates photostitching 18 individual images while moving the micro-
scope in the x-y plane on a composite paint. The techniques demonstrated in Figure
5.6 and 5.7 can be combined to image large 3-D objects with significant depth.

The precision of the instrument was found to be dependent on the speed of movement.
At the maximum speed of 60 mm/s, an average error of 10 µm was found. At the
lowest measured speed of 2 mm/s, this average error was determined to be 27 µm.

2Figure 5.5 contains a screenshot of the Franklin interface in a web browser. Window decorations
of the Iceweasel web browser are used under the Fair Use exception of copyright law. Fair Use
is applicable, because the illustration is similar to a quote, it is freely available to everyone, the
screenshot is an insignificant part of the browser program and reading this dissertation is not a
substitute for using Iceweasel.

59



Figure 5.3: The 3-D microscope stage shown adapted to a stage. The stage
is viewed from above by a conventional microscope.

This error is likely due to the lagging of components. At higher speeds, a sudden
stop in movement presses the parts into their final position, resulting in a smaller
positioning error. This conclusion was confirmed by the results of the small circles
experiment that demonstrated that the actual position was slightly behind that of
the target, resulting in a circle of smaller radius than instructed.
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Figure 5.4: The electronic schematic of the 3-D microscope.

In measuring the accuracy of the device, a piece of copper was initially measured to
be 101.22 mm long. The microscope measured a length of 101.64 mm, yielding an
error of 0.15%. It should be noted, however, that no attempt was made to calibrate
the machine for scale. The absolute error at long distances can be made just as small
as the error associated with precision if a calibration is performed.

Most commercially available microscope stages for scientific applications are two-
dimensional. They cost around $10,000, have a repeatability between 0.2 and 2 µm,
and they have a precision between 5 and 500 nm. The device presented here is
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Figure 5.5: The Franklin interface allows users to control the movement
of the USB microscope in x, y and z directions. Furthermore, G-Code files
can be uploaded and executed.

three-dimensional, costs less than $1,000, and it has a repeatability of 156 µm and
a precision of less than 30 µm. While commercial alternatives demonstrate superior
operative standards, the experimental operations outlined here prove this new system
to be sufficient for many scientific applications. The economic analysis of a proprietary
machine compared to the OS variant described is summarized in Table 5.1.

5.4.2 Discussion

It should be pointed out here that the open microscope stage is a true 3-D stage.
This is extremely rare for commercial stages as manufacturers expect the microscope
to move in the Z direction, although this is not always an option. Because of this,
there were no true commercially comparable equivalent products found on the market.
Despite this limitation for comparison, there are several points that are clear from
Table 5.1. First, the open-source microscope stage is larger than all commercial tools
in the survey of proprietary equipment. The size of the open source stage was largely
dictated by the size of the MOST delta from which it was derived. This obviously
has clear advantages for imaging large objects with complex and large variations in
geometries. These types of objects are simply not generally available for microscopic
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b

c

Figure 5.6: a) An image of a flower where the bottom is in focus. b)
An image of a flower where the top is in focus. c) The final image of the
stacking technique results in an image of greater depth than any of the
original images.
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Table 5.1

Comparison of open source microscope to proprietary microscope
specifications.

Product Name Price Travel Max v Rep. Res. Source
(US$) Range (mm) (mm/s) (µm) (nm)

MOST Open 425 �250× 200 156 30,000
Source Stage
MS-9400 XY 9, 250 225× 100 7 0.7 100 [136]
Automated Stage +5, 220
MLS203-1 6, 799 100× 75 250 0.25 [137]
XY Stage +2, 959
Motorized XY 4, 900 100× 120 85 2 [124]
Microscope Stage
Leica LMT260 XY 16, 000 120× 80 500 0.25 5 [125]
Scanning Stage

imaging without disassembly or destruction (e.g. via mechanical slicing). Combining
the demonstrated functionalities of the stage for both focus stacking (Figure 5.6) and
image stitching (Figure 5.7), this device makes it possible for the first time to develop
large composite images of the exterior of objects with enormous depth over a volume
of cylinder measuring 250 mm in diameter by 200 mm in height. Future work could
improve the usability of this tool by automating the focus for such stack-stitched
images.

The costs of the open source stage are also at least an order of magnitude less than the
proprietary commercial tools with even remotely similar functionality. The maximum
speed of the open source stage is slower than the majority of tools, but is not the lowest
as seen in Table 5.1. Speed may become important for large dynamic image capture.
Finally, the repeatability, which was measured in this study to be over 150 microns
was significantly higher than all the commercial devices. For the vast majority of
microscopy applications this is not a problem as the user has visual feedback (e.g.
the feature of interest is in the field of view). The one application, where a small
error in repeatability is necessary is when doing photostitching with no overlap after
performing a raster over a large area. As this study has demonstrated in Figure 5.7,
use of open source photostitching software is an adequate solution as long as a small
overlap is tolerated. The slightly slower resultant image taking time would only be
a problem in experiments where the sample exhibits significant changes during the
measurement, but such experiments are unsuitable for using photostitching without
overlap as well.

For those needing improved repeatability the precision of the open source stage can
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be improved using several approaches including decreasing the volume and using
larger linear bearings to decrease unwanted movement in the carriages. In addition,
higher pitch lead screws would lead to smaller steps which can be useful for high
magnification work.

The work presented in this paper adds to the growing interest in open source tools for
microscopy [65, 119, 138, 139, 140] demonstrates a variety of similarities to the open
source microscope found on OpenLab Tools [119]. However, where that team aims
to build a new machine entirely, this work targets currently existing and operational
machines [124]. The benefit to this approach is that it negates the necessity of a new
machine, and it expands the current applications of existent lab facilities. This limits
the options for the optics that can be used in mobile tool mode compared to other
microscopes, including the OpenLabTools open source microscope. This limit can be
avoided when using the machine in stage mode, but this limits the sample size.

This work opens the door to a multitude of potential future research investigations.
The machine presented in this paper currently does not support Micro-Manager, a
popular program for controlling microscopes in scientific experiments. Adding this
functionality would further broaden the platform for open-source technology. Addi-
tional work could also be done in the area of calibration. As this system currently
stands, calibration requires the user to understand the associated underlying pro-
cesses. A separate calibration interface could be designed in order to automate and
simplify calibration.

Finally, it should be pointed out that the extreme affordability of this automated
3-D microscope vastly improves accessibility. Few research groups, particularly in
the developing world can afford more than $10,000 for an automated microscope
stage. This stage fits into the established paradigm of 3-D printing reducing research
costs [17]. By enabling more scientists to have access to cutting edge tools such as
this microscope, the number and diversity of the scientific community is expected to
increase [115].

5.5 Conclusions

This paper presents a low-cost, open source microscope that maintains the use of
the 3-D printer architecture on which the hardware is built. The machine is a true
3-D stage and thus able to operate with USB microscopes or conventional desktop
microscopes. It is larger than all commercial alternatives, and is thus capable of high
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depth images over unprecedented areas and complex geometries. The repeatibility is
below 2-D microscope stages, but testing shows that it is adequate for many scientific
applications. The precision of the instrument was found to be dependent on the speed
of movement (i.e. an average error of 10 µm, 60 mm/s and 27 µm at 2 mm/s) and
accuracy tests yielded an error of 0.15%. The open source microscope stage costs
less than 9% of the closest proprietary commercial stages. This extreme affordability
vastly improves accessibility for 3-D microscopy throughout the world.
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Figure 5.7: Final photostitched image of complex aggregate paint.

67





Chapter 6

Improved Model and Experimental
Validation of Deformation in Fused
Filament Fabrication of Poly Lactic
Acid

Abstract1

RepRaps (self Replicating Rapid prototypers), which 3-D print objects using fused
filament fabrication (FFF) have evolved rapidly since their open source introduc-
tion. These 3-D printers have primarily been limited to desktop sizes of volumes of
≈8 cm3, which has limited the attention of the scientific community to investigating
deformation of common thermoplastics such as polylactic acid (PLA) used in FFF
printing. The only existing physically relevant deformation model was expanded
to use a physics based temperature gradient instead of a step function. This was
necessary to generalize the model to 3-D printing in a room temperature environ-
ment without a heated chamber. The thermal equation was calibrated using thermal
measurements and validated by measuring curvature in printed objects. The results
confirm that this is a valid model for predicting warpage of thin vertical walls of PLA.
Additionally, the effect of annealing was examined. It was found that at a temper-
ature of 50◦C, no shrinkage or crystallization takes place, but at 90◦C the rapidly
crystallizes to around 20% crystallinity. This indicates that heated bed temperatures
should be maintained at 50◦C or lower to avoid print failure with PLA. At 90◦C, the

1The material contained in this chapter is in preparation for submission to a journal.
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annealing is accompanied by a 5% size decrease in both horizontal dimensions, but
an 8% increase in the vertical dimension. Thus, the volume decreased by only 3%,
indicating potential methods of improving slicing of printing large PLA objects with
FFF.
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6.1 Introduction

RepRaps (self Replicating Rapid prototypers), which 3-D print objects using fused
filament fabrication (FFF) have evolved rapidly since their open source introduction
[2, 3, 4]. There are now dozens of RepRap designs [141] and the majority of the
prosumer 3-D printers on the market are derived from RepRaps [142] including Make
magazine’s best 3-D printer of 2015 the open source Lulzbot Taz [143]. With this
rapid technological evolution, FFF 3-D printing applications have also exploded and
have opened many doors for applications that were previously only affordable for large
companies such as: open source appropriate technology for sustainable development
[16, 17, 144, 145], personal fabrication [146], small custom print shops [147], scientific
equipment [10, 36, 59, 65, 103, 108, 123, 148], microfluidics [149], solar photovoltaic
racking [150, 151], dentistry [152, 153], medicine [114, 154, 155, 156]; farming equip-
ment [157], education [21, 158, 159, 160, 161, 162, 163], and museum replications
[164].

So far, the new FFF 3-D printers have mostly been limited to desktop sized models,
which primarily print in poly lactic acid (PLA) with a linear coefficient of thermal
expansion of 8.5 · 10−5K−1 [165] because it demonstrates less warping during a print
than other materials such as ABS (7-15 · 10−5K−1) or HDPE (6-11 · 10−5K−1) [165]
plastic and the emissions during printing are less pungent [166]. Furthermore, PLA
is made from corn-based resin, making it non-toxic, biodegradable, and able to be
produced in environmentally friendly, renewable processes [167, 168]. The size of the
printers (around 8,000 cm3) have limited the size of the prints that can be made with
them. There have, however, also been attempts to use larger machines as open source
hardware 3-D printers such as the Gigabot (212,400 cm3) developed by re:3D [169].

Because of the limited adoption, not much attention has been given so far to the
challenges that large scale 3-D printing presents. The main challenge is to limit the
deformation of the printed part during the printing process. To obtain deformation
free high quality prototypes remains one of the most important challenges in the rapid
prototyping field [170] as a whole and the additive manufacturing field in particular.
Due to temperature gradients in the print, the edges tend to warp upwards as seen
in Figure 6.1. With larger prints, this effect is larger. If the effect is too large,
the object will release from the substrate before it is completed, and the print will
have failed. Residual stress [171] and crystalinity [172] are important parameters for
the properties of printed objects and the determination of deformation, however the
deformation process of FFF is not well understood.

This study presents theory and experiments to investigate the mechanism behind
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Figure 6.1: Commonly observed deformation in the first layers of 3-D
printed PLA.

the deformation in PLA during FFF. First, existing models and their deficiencies
in producing a control for deformation in 3-D printing PLA are reviewed. Wang’s
1-dimensional model is expanded to use a physics based temperature gradient, and
it is verified using a measured temperature gradient in a printed part. The changes
in size and crystallinity before and after annealing are measured to explain substrate
release several hours into the print.

6.2 Background

6.2.1 Models of Deformation in FFF

Some very limited research has been done to prevent deformation in fused filament
fabrication (and the subclass of fused deposition modeling, FDM). For plastic parts,
a model was proposed to explain warpage [173] and tested on an FDM printer for
number of layers, layer height and chamber temperature of an enclosed proprietary
printer. This model uses a heated build chamber, so the temperature gradients are
smaller. Because of this, it assumes that the gradient is a step function, where only the
newly printed layer is not cooled to the chamber temperature yet. It thus simulates
detaching a newly printed layer letting it cool to the chamber temperature and then
straining that layer back to the original length, reattach it and enforce equilibrium
conditions. Although this is non-physical it provides useful results particularly for
the class of printer for which it was targeted. Based on this model, an alternative
method for toolpath creation has been proposed and demonstrated to limit warpage
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of the printed object [174]. This method limits the length of the traces by dividing
the object into bricks. Their results show that this limits the warpage, as predicted
by the model.

A second model was developed by Xinhua et al. This model also simplifies the tem-
perature gradient in the object that is being printed as a step function, and assumes
every layer to be deposited in zero time [175]. It is based on a model for deformation
of a thin plate with a vertical load [176]. This does not correspond to the modeled
scenario, and therefore it does not give relevant results. It is unclear how the fi-
nal deformation is computed from the given formula. The system only varies in the
vertical direction, and the model that was used predicts zero deformation for that
case. Xinhua et al. then continue to determine optimal process parameters for thin
plates based on experiments, but the model’s predictions are not compared to the
experimental results [175] and continuation of this model is not recommended.

Thus in this study, Wang et al.’s model is extended to a physics based generalizable
system of FFF without a heated chamber.

6.2.2 PLA and FFF

PLA is a thermoplastic polymer that is produced from natural sources such as corn.
It is nontoxic and biodegradable, making it a popular choice for packaging and 3-D
printing. Another feature that makes it good for 3-D printing is its limited shrinkage
compared to other thermoplastics such as ABS.

Polymers can have varying degrees of crystallinity and PLA is no exception. Crys-
tallinity of commercial PLA filament varies due in part to coloring agents [172]. An-
nealing causes PLA to crystallize, following standard avrami crystallization kinetics
[177].

During FFF 3-D printing, the PLA is first heated to a temperature near the melting
temperature (Tm) and above the glass transition temperature (Tg). It is then extruded
and deposited on the object that is being printed in the temperature range between
Tm and Tg. During this time PLA can acquire a large deformation with less force
and the capacity to resist outside forces is small [178]. The object cools as the print
progresses and internal stress is accumulated [173]. The substrate may be heated,
resulting in an even more complex temperature gradient in the object. Heating a
chamber in which the 3-D printer is placed [179, 180] or a printer with an integrated
heated build chamber such as the GolemD [181] or the Kühling & Kühling RepRap
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Industrial 3-D printer [182] on the other hand keeps the differences smaller. Most
proprietary 3-D printers have enclosed heated build chambers, which helps them limit
the warpage.

The extrusion causes the material to decrystallize [183]. This effect is stronger at a
lower temperature. The cooling leads to shrinkage, and because of the temperature
gradient, this leads to internal stress and deformation. Finally, a heated substrate
may anneal the lower layers of the object, and a heated chamber may anneal the
entire object. This results in recrystallization of the PLA. All of these processes will
be probed here to develop a full model.

6.3 Methods

6.3.1 Materials

All objects were printed from PLA that was extruded from resin (Natureworks 4043D
25kg polylactide resin) without additives [184].

6.3.2 3-D printers

The prints were made on a MOST RepRap 3-D printer [21], with a 0.5 mm nozzle.
The substrate was regular soda-lime glass without heating. The substrate was cleaned
with soap and destilled water and dried with compressed air. While application of
glue to the substrate improves bed adhesion, it can interfere with X-ray diffraction
(XRD) measurements and was avoided.

For all experiments, the 3-D printer was controlled using Franklin [1]. The objects
that were measured with XRD were created with OpenSCAD [86] and sliced using
Slic3r [185] with 100% infill. The infill was set to be lines that are parallel to the sides
of the object, alternating between the long and the short direction. The toolpath for
the temperature measurement was created using a custom Python script [186].
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6.3.3 Measurements

6.3.3.1 Temperature

Temperature graphs of a thin vertical wall were made while printing using an infrared
sensitive camera (FLIR e60). The recordings were stored as mp4 movie files by the
camera, in false color with a scale bar on screen. Also included on screen was the
temperature of the center of the image. The scale bar was divided into regions where
one component had a linear relation with the temperature, and that component was
manually fit to the value on the scale. Those fits were used to convert the colors
in the image to intensity. The constant temperature background and the known
temperature from the center were used to convert the image to a temperature scale.
The temperature of the top layer was plotted and a fit through the graph was used
to adjust the top of the temperature scale. The vertical temperature gradient of a
thin vertical wall was examined while it was being printed.

6.3.3.2 Temperature Model

To enable extension and improvement of Wang et al.’s work to a more generaliz-
able FFF 3-D printing scenario a physics based model for the temperature gradient
in the printed object was derived. The existing model uses a step function for the
temperature. This is a simplification that is only valid if the environment temper-
ature is relatively high. The improvement that was made, was to replace the step
function with a physics based temperature gradient that was fit to a set of measured
temperatures.

The change in temperature with time has three components. Conductivity is pro-
portional to the second derivative of the temperature to the position, convection is
proportional to the temperature difference between the object and the air, and radi-
ation is proportional to the fourth power of the absolute temperature of the object.
There is also incoming radiation, which is proportional to the fourth power of the
absolute environment temperature.

The model assumes symmetry in both horizontal directions, so z is the only spatial
variable of interest:
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∂T

∂t
= C0

∂2T

∂z2
− C1∆T − σ∆(T 4) (6.1)

In this equation, C0 and C1 are proportionality constants for conduction and convec-
tion respectively, and σ is the Stefan-Boltzmann constant.

This equation does not have an analytical solution. Therefore, it was simplified
to ignore radiation. This simplification is justified for temperatures close to the
environment temperature, where conduction and convection are much more important
factors for heat transport than radiation. Errors due to the simplification show up as
a higher cooling rate in the measurement than in the model for the regions of higher
temperatures.

3-D printing is modeled as a continuous process. The top of the object grows with
time at a speed v. The temperature difference between the top boundary and the air
is always T0.

With this simplification and boundary condition, the solution to the equation is:

∆T (z, t) = T0e
a

v
z−at (6.2)

In this solution, a = v v±
√
v+4C0C1T0

2C0T0

. Because C1 depends on many properties, includ-
ing ambient temperature, air flow and humidity, no attempt is made to predict its
value, and instead a is fit to the measurement. The only time of interest is at the end
of the print, so t = h

v
.

Equation 6.2 is used in Wang’s model instead of the step function that was used there.
The other two equations remain identical:

h
∫

0

(−Eα∆T + σ′ +
Ez

R
)dz = 0 (6.3)

h
∫

0

(−Eα∆T + σ′ +
Ez

R
)zdz = 0 (6.4)
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In these equations, E is the elastic modules which is 1.03 GPa for amorphous PLA
[177], and α is the linear coefficient of thermal expansion, which is 8.5 ·10−5K−1 [165].
σ′ is a combination of several stress components, which is simplified in the original
model by treating it as a scalar. This simplification is used in the improved model as
well.

Equations 6.2, 6.3 and 6.4 can be solved for the curvature k = 1

R
:

k(h) =
6αT0

h2

(

2 +
2v2 − a2h

ahv

(

e−
h

v
a − 1

)

)

(6.5)

To verify this model, a wall was printed like in the temperature measurement, and
it was broken off the substrate immediately after completion of the print, and left to
cool normally. The resulting warped objects were scanned at 600 dpi on a flat bed
scanner and the scans were analyzed using Gimp [187]. The height of the object (h)
was verified to be what it was printed as, and the distance from the line between
the two tips of the object to the lowest point on the top layer, in the middle (δ),
was measured. This is the amount of warp. From this and the length of the object,
the radius of curvature (R) was computed and compared to the predicted value. A
diagram with the variables is shown in Figure 6.2.

δ

R

h

Figure 6.2: Diagram showing the meaning of the variables in an exagger-
ated example of warping.

6.3.3.3 Crystallinity

Rectangular blocks of 10 cm × 2.8 cm × 1 cm were printed and annealed at 50◦C
between 0 and 4 hours. This temperature was chosen as representative for a typical
heated substrate during a print. The size before and after annealing was measured,
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and crystallinity was measured using XRD with a Scintag XDS 2000 powder diffrac-
tometer. The parts were expected to crystallize during annealing, and shrink as a
result of that. Because no crystallinity was observed even as a result of 4 hours of
annealing, the blocks were annealed again for the same time as before, but now at
90◦C. The size and crystallinity was determined again after this.

6.4 Results

An example frame that was used for one curve is shown in Figure 6.3 with the hotend
moving to the right. As can be seen in Figure 6.3, the clean glass substrate is highly
reflective at the large angle and these reflections were not analyzed. It is also clear that
the hottest PLA has just left the nozzle and the coldest PLA is on the bottom layer
on the return side, which has had the longest to cool. There is a clear temperature
gradient from the substrate surface to the print surface. Figure 6.4 shows the gradient
of the temperature in the vertical wall after 14, 18, 22, 26, 32, 36 and 40 layers. Every
curve had the print head in the same position and moving in the same direction. The
curves become longer as the print becomes taller and the maximum intensity is the
most recently printed layer. The thermal model was fit to the data and is shown in
Figure 6.4 as smooth lines. The lines do not fit the data closely, indicating that the
approximations used were over simplified.

Figure 6.3: A representative infrared images that was used to measure the
temperature of the printed object.

78



40

50

60

70

80

90

100

110

120

130

−1 0 1 2 3 4 5 6 7 8 9

T
em

p
er
at
u
re

(◦
C
)

Height (mm)

Figure 6.4: Vertical gradient of the temperature at several points in time.
The thermal model is fit to the data.

Before annealing, but also after annealing the objects at 50◦C, no crystalline peaks
were visible on the XRD spectra. After annealing for 1 hour, the crystallinity was
20%, and further annealing did not make it go up further.

The size of the objects is shown in Figure 6.5. The absence of any change for the
50◦C annealing can clearly be seen, as can the effect of a smaller horizontal size after
annealing at 90◦C. However, the height of the objects increased.

The effect of stress relaxation by deformation was also very clearly seen in a block
that was printed at 170◦C. During the print, the extruder was unable to output
enough filament, so the material was stretched. On one side, this led to the object
being released from the substrate during the print. Other than that, the object was
entirely rectangular. During annealing, it curled up significantly, as can be seen in
Figure 6.6. The object is upside down compared to how it was printed; the side that
rests on the table was flat before annealing. The warped side is the top right of the
picture.
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Figure 6.5: Changes in size after annealing at 50◦C and 90◦C. At 50◦C
there is no change in size, while at 90◦C the objects have shrunk horizontally,
but grown vertically.

Figure 6.6: The object that was printed at 170◦C and annealed at 90◦C
for 4 hours. The object is upside down compared to how it was printed. The
top right is curved because it warped during printing. The bottom of the
object is the last layer that was printed and was flat before annealing.

80



The measurements on the warped vertical wall are shown in Figure 6.7. The curve is
the prediction from the model, purely based on the thermal data. It is very close to
the actual values given that the temperature fit had a sizable error and simplifications
were made to the physics. The points at larger heights can be expected to be closer to
the curve, because the substrate is not part of the model and its influence is smaller
there. The method also expected the part to start warping while the head was on
the last layer in the position as shown in Figure 6.3, but in practice it took a few
seconds to break it off the substrate, so it had cooled a little more than what the
model expected. Because of this, the values are expected to be slightly lower than
what the model predicts.
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Figure 6.7: Measured warp and model predictions. The curve is the
model’s prediction with the variables from the fit to the thermal graph.

6.5 Discussion

The thermal model presented here is based on physics and therefore more realistic
than what was used by Wang et al. [173]. The model successfully predicts warpage
of amorphous objects. The expectation is that it also works for other plastics, but
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this remains to be tested in future work. The behavior of the curvature is correctly
predicted, but the magnitude is too high, especially for lower print layers. This is
likely caused by the simplifications in the model, such as ignoring the radiation and
the effects of the substrate. These simplifications have a larger effect on lower prints,
so the larger error in the prediction was expected.

Some experiments were also done to show the effect of annealing on printed objects.
This is especially relevant for printers with a heated substrate or chamber, because
those printers are annealing the objects during the print. It was found that at a tem-
perature of 50◦C, the objects neither shrink nor crystallize, while at 90◦C, they rapidly
crystallize and shrink considerably. Colored PLA already has some crystallinity as
shipped [172]. Further study is required to see if this means that it shrinks less, or
that it more readily crystallizes and reaches higher crystallinity, thus shrinking more.
The crystallization explains why long prints can release from the substrate several
hours into the print. This suggests that keeping the temperature of the substrate
below 50◦C would prevent this problem.

An unexpected effect of annealing was that the height of the objects increased. While
there was a 5% size decrease in both horizontal dimensions, there was an 8% increase
in the vertical dimension, so the volume decreased by only 3%. This could be caused
by relaxation of internal stress. This theory fits the observation that an object that
suffered from severe underextrusion during the print, which likely led to larger internal
stress, warped significantly during annealing. However, experimental testing of under-
extrusion did not provide an increased deformation.

These results can also be used to better guide slicing routines for large objects printed
in PLA or other polymers that build up internal stress. In Wang’s article [173] a
combination contour raster is chosen, which takes advantage of the good surface finish
and dimensional accuracy of a contour on the outer layers, and then the high speed
deposition of a raster on the interior. Such a method of separating fill and exterior
is now common in all open source slicing programs (e.g. Cura and Slic3r). Guerrero
[174] had proposed an alternative method for toolpath creation that has demonstrated
less warpage of the printed object. It involves breaking up long runs into bricks. With
the same curvature, this limits deformation by shortening the length of the curving
pieces, but this comes at the cost of loss in strength. In addition, the actual toolpath
of Guerroro bricking was not divulged. Future work is needed to determine the
optimal size of bricks, the shape (square or hexagonal), the stacking orientation, and
the toolpath within a brick (e.g. rastor vs contour or some combination).

Although this study successfully explained how the deformation process occurs it
did not investigate how to stop it. However, the results of this study indicate several

82



potential solutions. The first involves using the model developed here, improving upon
it by excluding the simplifications, and then using it to predict the exact deformation
of a brick building block. Then two paths are possible. The first involves over close
packing the bricks by the required expected deformation to obtain a solid. The second
involves using this information to slice an object into bricks with space for mortar of
the size needed to fill the expected deformation on a sealing pass. The mortar passes
would ideally be determined by the nozzle diameter of the FFF machine. Finally,
the mortar tool path would need to be optimized to minimize single toolpath lengths
while binding all he bricks into a single unit. Future work is necessary to test these
two new methods of slicing to prevent fatal deformation of large-scale FFF.

6.6 Conclusions

The deformation model presented by Wang et al. for chamber based FDM was
generalized for FFF 3-D printing with a room temperature environment and expanded
to use a physics based temperature gradient. The thermal equation was calibrated
using thermal measurements and validated by measuring curvature in printed objects.
The results showed that this works to make the model usable for lower ambient
temperatures. It isn’t very accurate for the first layers, but after about 10 mm it
predicts the deformation well. Additionally, the effect of annealing was examined. It
was found that at a temperature of 50◦C, no shrinkage or crystallization takes place,
but at 90◦C the plastic rapidly crystallizes to around 20% crystallinity. This indicates
that heated bed temperatures should be maintained at 50◦C or lower to avoid print
failure with PLA. At 90◦C, the annealing is accompanied by a 5% size decrease in
both horizontal dimensions, but an 8% increase in the vertical dimension. Thus, the
volume decreased by only 3%, indicating some potential slicing measures that could
reduce deformation of a printed object.
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Chapter 7

Future Work

This dissertation describes a few steps on the way of making science more accessible
for everyone through the use of 3-D printers. It is highly interdisciplinary. The com-
puter science development in Chapter 2 gives greater control over materials processing
equipment, such as 3-D printers, and materials characterization equipment, such as
the 3-D microscope described in Chapter 5. The work on computer science and elec-
trical engineering in Chapter 3 allows for low cost materials characterization in remote
areas. Similarly, the work on mechanical and electrical engineering in Chapter 4 is
helpful to medical doctors, chemists, physicists, biologists and materials scientists for
process control of their work. The microcope described in Chapter 5 allows scientists
from all disciplines to do automated 3-D microscopy for any purpose, including ma-
terials characterization. Finally, Chapter 6 presents a physics based model which can
be used by materials scientists to better explain the structure and properties of poly
lactic acid as it is being printed.

Much more can be done in regards to making science more accessible. In this final
chapter, ideas for future work will be provided.

7.1 3-D Printer Improvements

First of all, several improvements to open source 3-D printers would be useful for
scientific applications. Delta printers are not easy to calibrate. A machine such as the
Athena[135] allows mounting a microscope, as described in Chapter 5. This feature
should be used in combination with focus detection to determine the position of the

85



build platform in many locations. Then those positions can be used to automatically
calibrate the machine.

As described in Chapter 6, a heated build chamber would be a valuable feature to
prevent deformation.

Once the deformation is under control, the option of printing larger parts becomes
available. For this, a large scale printer would be needed, and it must be set up to
deposit more material per second, so that printing completes in a reasonable time.

7.2 Software Improvements

One major benefit of using open source hardware is that it allows the user to adapt
the device to their needs. This is even more powerful when combined with open
communication standards. There is currently no universal standard for automated
sensors. It would be very useful if such a standard were to be developed, so that
programs that do data aquisition and transfer can handle sensors that were unknown
to the developer of the software.

Related to this is the problem of ownership. For repositories that hold a lot of
information, such as Thingiverse [188] or Github [189], the owners of those services
can do significant damage to the community by taking their service offline. In a
more subtle way, they can damage the community by modifying the presentation
of the information to benefit their interests instead of those of the users. The best
protection against both those dangers is to decentralize the services, so they become
webs of servers hosting small parts of the information each. This presents significant
challenges, especially in terms of searching through the information. File sharing
services have solved some of those issues. It would be good if that knowledge was
used to set up a web of scientific information that is not controlled by any single
entity.

7.3 Education

As part of my work here, I have helped to run workshops to build 3-D printers with
middle and high school teachers. These workshops are extremely good for society,
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because they give access to open source hardware to the students. Not only that, the
printers are devices that allow them to build their own open source hardware, so they
learn about the possibility of designing their own lives. It would be good if more such
workshops would be given. And because teachers are always busy and do not have
much time to develop new material, in addition it would be good if more educational
programs would be developed to make use of 3-D printers.

Another way to make 3-D printers more useful to schools, is by going through the
entire curriculum of a discipline, such as physics or biology, identify every tool that
could be printed to help with the subject, and make designs for those tools, similar
to what was done by Zhang et al. for optics equipment [65]. That would result in an
open source library which would lead to big cost reductions for schools.

7.4 Deformation

The improved deformation model that was presented in Chapter 6 should be used as
a basis for preventing or compensating for deformation. Especially for large printers,
it would make the machine easier to build and less costly if it would not have a
heated build platform or build chamber. Therefore, temperature should be controlled
through delays and possibly cooling fans. That limits the control to cooling, so the
slicing strategy must account for that.

One option that could be explored would be to use a bricked raft on which a normally
sliced object is built. This would allow some flexibility compared to attaching the
object directly to the substrate, which could help the object to stay attached to the
raft.
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Appendix A

Franklin Source Statistics

This appendix contains a list of source code files of Franklin, and the number of
lines that they contain. Another interesting part would have been the amount of
development time. However, there is no objective conversion possible from lines of
code to hours of work, and this information was not recorded. The files are all
available on Github [18].

Lines Filename Function
13 .gitignore workflow enhancement
661 LICENSE legal matter
88 Makefile build rules
28 README.md documentation
140 calibrate/Athena.ini initial settings
45 calibrate/bed-map automated calibration
12 calibrate/calibration.tex documentation
274 calibrate/delta-calibrate automated calibration
57 calibrate/delta.ini initial settings
31 calibrate/export profile management
45 calibrate/import profile management
56 calibrate/melzi.ini initial settings
661 calibrate/printer3d-calibrate automated calibration
168 calibrate/printer3d-calibrate.gui.in automated calibration
79 calibrate/prusa.ini initial settings
229 calibrate/rambo.ini initial settings
69 calibrate/ramps.ini initial settings
434 calibrate/reset.ini initial settings
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Lines Filename Function
11 debian/changelog build rules
1 debian/compat build rules
21 debian/control build rules
682 debian/copyright build rules
8 debian/franklin.default build rules
4 debian/franklin.dirs build rules

170 debian/franklin.init build rules
17 debian/franklin.install build rules
3 debian/franklin.links build rules
1 debian/franklin.manpages build rules
1 debian/franklin.mime build rules
29 debian/franklin.postinst build rules
10 debian/franklin.postrm build rules
6 debian/franklin.udev build rules
38 debian/rules build rules
1 debian/source/format build rules
7 doc/examples/README.md documentation
10 doc/parity.txt documentation
41 doc/plan.txt documentation
96 doc/protocol.txt documentation
90 firmware/Makefile build rules

1226 firmware/arch-avr.h AVR specific code
221 firmware/arch-bbb.h BeagleBone specific code
224 firmware/arch-sim.h simulator specific code
542 firmware/firmware.h declarations
206 firmware/firmware.ino main loop
623 firmware/packet.cpp incoming packet handling
579 firmware/serial.cpp serial communication handling
89 firmware/setup.cpp firmware initialization
131 firmware/timer.cpp recurring event checks
3 firmware/vg valgrind helper for simulator target
4 server/bb/Makefile build rules
36 server/bb/avrdude.conf programmer hardware definition
47 server/bb/flash-bb-0 programmer for ttyS0
45 server/bb/flash-bb-4 programmer for ttyS4
53 server/bb/setpin.c change pin function
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Lines Filename Function
77 server/cdriver/Makefile build rules

1434 server/cdriver/arch-avr.h AVR specific code
703 server/cdriver/arch-bbb.h BeagleBone specific code
68 server/cdriver/athena-0.dts BeagleBone device tree
94 server/cdriver/base.cpp cdriver main loop
136 server/cdriver/bbb pru.asm BeagleBone PRU assembly
618 server/cdriver/cdriver.h declarations
40 server/cdriver/configuration.h build time configuration
138 server/cdriver/debug.cpp debugging helpers
153 server/cdriver/globals.cpp global settings
72 server/cdriver/gpio.cpp gpio settings
70 server/cdriver/hostserial.cpp communications with Python driver
550 server/cdriver/move.cpp movement planning
752 server/cdriver/packet.cpp handling packets from Python driver
482 server/cdriver/run.cpp stored G-Code handling
655 server/cdriver/serial.cpp serial communication handling
147 server/cdriver/setup.cpp initialization
920 server/cdriver/space.cpp space settings
58 server/cdriver/storage.cpp settings storage helpers
273 server/cdriver/temp.cpp temp settings
293 server/cdriver/type-cartesian.cpp cartesian and related details
224 server/cdriver/type-delta.cpp delta details
129 server/cdriver/type-polar.cpp polar details
3 server/cdriver/vg valgrind debugging helper
67 server/control.py serial port autodetection helper

3275 server/driver.py Python driver
7 server/firmware/Makefile build rules
59 server/franklin.8.ronn documentation
19 server/html/Makefile build rules
44 server/html/index.html web interface
371 server/html/main.css web interface
2023 server/html/main.js web interface
430 server/html/server.js communication helpers
916 server/html/templates.js component widgets
160 server/protocol.py communication definitions
950 server/server.py server
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Lines Filename Function
32 util/Makefile build rules
224 util/c457a-ui microscope tool
43 util/c457a-ui.gui.in microscope tool interface
88 util/display microscope tool interface
96 util/embroidery.py embroidery tool
223 util/franklin joystick.py joystick helper
52 util/joystick.c joystick helper

25534 total
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